Long time asymptotics of the Camassa–Holm equation on the half-line
Anne Boutet de Monvel[1]; Dmitry Shepelsky[2]
- [1] Université Paris Diderot Paris 7 Institut de Mathématiques de Jussieu Site Chevaleret, Case 7012 75205 Paris Cedex 13 (France)
- [2] Institute B. Verkin Mathematical Division 47 Lenin Avenue 61103 Kharkiv (Ukraine)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 3015-3056
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoutet de Monvel, Anne, and Shepelsky, Dmitry. "Long time asymptotics of the Camassa–Holm equation on the half-line." Annales de l’institut Fourier 59.7 (2009): 3015-3056. <http://eudml.org/doc/10478>.
@article{BoutetdeMonvel2009,
abstract = {We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation $u_t-u_\{txx\}+2u_x+3uu_x=2u_xu_\{xx\}+uu_\{xxx\}$ on the half-line $x\ge 0$. The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane $x>0$, $t>0$ having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data associated with the initial and boundary values.},
affiliation = {Université Paris Diderot Paris 7 Institut de Mathématiques de Jussieu Site Chevaleret, Case 7012 75205 Paris Cedex 13 (France); Institute B. Verkin Mathematical Division 47 Lenin Avenue 61103 Kharkiv (Ukraine)},
author = {Boutet de Monvel, Anne, Shepelsky, Dmitry},
journal = {Annales de l’institut Fourier},
keywords = {Camassa–Holm equation; asymptotics; initial-boundary value problem; Riemann–Hilbert problem; Camassa-Holm equation; nonlinear steepest descent method; Riemann-Hilbert problem},
language = {eng},
number = {7},
pages = {3015-3056},
publisher = {Association des Annales de l’institut Fourier},
title = {Long time asymptotics of the Camassa–Holm equation on the half-line},
url = {http://eudml.org/doc/10478},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Boutet de Monvel, Anne
AU - Shepelsky, Dmitry
TI - Long time asymptotics of the Camassa–Holm equation on the half-line
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 3015
EP - 3056
AB - We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation $u_t-u_{txx}+2u_x+3uu_x=2u_xu_{xx}+uu_{xxx}$ on the half-line $x\ge 0$. The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane $x>0$, $t>0$ having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data associated with the initial and boundary values.
LA - eng
KW - Camassa–Holm equation; asymptotics; initial-boundary value problem; Riemann–Hilbert problem; Camassa-Holm equation; nonlinear steepest descent method; Riemann-Hilbert problem
UR - http://eudml.org/doc/10478
ER -
References
top- Richard Beals, David H. Sattinger, Jacek Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154 (2000), 229-257 Zbl0968.35008MR1784675
- Richard Beals, David H. Sattinger, Jacek Szmigielski, The string density problem and the Camassa-Holm equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007), 2299-2312 Zbl1152.35468MR2329150
- A. Boutet de Monvel, A. S. Fokas, D. Shepelsky, The mKdV equation on the half-line, J. Inst. Math. Jussieu 3 (2004), 139-164 Zbl1057.35050MR2055707
- A. Boutet de Monvel, A. S. Fokas, D. Shepelsky, Integrable nonlinear evolution equations on a finite interval, Comm. Math. Phys. 263 (2006), 133-172 Zbl1131.37064MR2207326
- Anne Boutet de Monvel, Aleksey Kostenko, Dmitry Shepelsky, Gerald Teschl, Long-Time Asymptotics for the Camassa–Holm Equation, SIAM J. Math. Anal. 41 (2009), 1559-1588 Zbl1204.37073
- Anne Boutet de Monvel, Dmitry Shepelsky, Initial boundary value problem for the mKdV equation on a finite interval, Ann. Inst. Fourier (Grenoble) 54 (2004), 1477-1495, xv, xxi Zbl1137.35419MR2127855
- Anne Boutet de Monvel, Dmitry Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris 343 (2006), 627-632 Zbl1110.35056MR2271736
- Anne Boutet de Monvel, Dmitry Shepelsky, The Camassa-Holm equation on the half-line: a Riemann-Hilbert approach, J. Geom. Anal. 18 (2008), 285-323 Zbl1157.37334MR2393262
- Anne Boutet de Monvel, Dmitry Shepelsky, Long-time asymptotics of the Camassa–Holm equation on the line, Proceedings of the Conference on Integrable Systems, Random Matrices, and Applications: A conference in honor of Percy Deift’s 60th birthday 458 (2008), 99-116, Amer. Math. Soc., Providence, RI Zbl05310327MR2411903
- Anne Boutet de Monvel, Dmitry Shepelsky, Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line, Probability, geometry and integrable systems 55 (2008), 53-75, Cambridge Univ. Press, Cambridge Zbl1157.35447MR2407592
- Anne Boutet de Monvel, Dmitry Shepelsky, A class of linearizable problems for the Camassa–Holm equation on the half-line, (2009) Zbl1079.35086
- Roberto Camassa, Darryl D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 Zbl0972.35521MR1234453
- Roberto Camassa, Darryl D. Holm, James M. Hyman, A new integrable shallow water equation, Hutchinson, John W. et al. (eds.), Advances in Applied Mechanics. Vol. 31, Boston, MA: Academic Press, p. 1-33 (1994) Zbl0808.76011
- Roberto Camassa, Jingfang Huang, Long Lee, Integral and integrable algorithms for a nonlinear shallow-water wave equation, J. Comput. Phys. 216 (2006), 547-572 Zbl1220.76016MR2235383
- A. Constantin, H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 Zbl0940.35177MR1686969
- Adrian Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 953-970 Zbl0999.35065MR1875310
- Adrian Constantin, Vladimir S. Gerdjikov, Rossen I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems 22 (2006), 2197-2207 Zbl1105.37044MR2277537
- Adrian Constantin, David Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), 165-186 Zbl1169.76010MR2481064
- Adrian Constantin, Jonatan Lenells, On the inverse scattering approach to the Camassa-Holm equation, J. Nonlinear Math. Phys. 10 (2003), 252-255 Zbl1038.35067MR1990677
- Adrian Constantin, Walter A. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A 270 (2000), 140-148 Zbl1115.74339MR1763691
- P. Deift, S. Venakides, X. Zhou, The collisionless shock region for the long-time behavior of solutions of the KdV equation, Comm. Pure Appl. Math. 47 (1994), 199-206 Zbl0797.35143MR1263128
- P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), 295-368 Zbl0771.35042MR1207209
- P. A. Deift, A. R. Its, X. Zhou, Long-time asymptotics for integrable nonlinear wave equations, Important developments in soliton theory (1993), 181-204, Springer, Berlin Zbl0926.35132MR1280475
- P. A. Deift, X. Zhou, Long-time asymptotics for integrable systems. Higher order theory, Comm. Math. Phys. 165 (1994), 175-191 Zbl0812.35122MR1298946
- A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 453 (1997), 1411-1443 Zbl0876.35102MR1469927
- A. S. Fokas, Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys. 230 (2002), 1-39 Zbl1010.35089MR1930570
- A. S. Fokas, A. R. Its, An initial-boundary value problem for the Korteweg-de Vries equation, Math. Comput. Simulation 37 (1994), 293-321 Zbl0832.35125MR1308105
- A. S. Fokas, A. R. Its, L.-Y. Sung, The nonlinear Schrödinger equation on the half-line, Nonlinearity 18 (2005), 1771-1822 Zbl1181.37095MR2150354
- Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, Victor Yu. Novokshenov, Painlevé transcendents, 128 (2006), American Mathematical Society, Providence, RI Zbl1111.34001MR2264522
- Alexander R. Its, The Riemann-Hilbert problem and integrable systems, Notices Amer. Math. Soc. 50 (2003), 1389-1400 Zbl1053.34081MR2011605
- R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82 Zbl1037.76006MR1894796
- R. S. Johnson, On solutions of the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), 1687-1708 Zbl1039.76006MR1997519
- Jonatan Lenells, The scattering approach for the Camassa-Holm equation, J. Nonlinear Math. Phys. 9 (2002), 389-393 Zbl1014.35082MR1931996
- Shixiang Ma, Shijin Ding, On the initial boundary value problem for a shallow water equation, J. Math. Phys. 45 (2004), 3479-3497 Zbl1071.35102MR2081640
- Yoshimasa Matsuno, Parametric representation for the multisoliton solution of the Camassa-Holm equation, J. Phys. Soc. Japan 74 (2005), 1983-1987 Zbl1076.35102MR2164341
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.