Quantization and Morita equivalence for constant Dirac structures on tori
- [1] University of California, Department of Mathematics, Berkeley, CA 94720 (USA), University of California, Department of Mathematics Davis, CA 95616 (USA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1565-1580
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTang, Xiang, and Weinstein, Alan. "Quantization and Morita equivalence for constant Dirac structures on tori." Annales de l’institut Fourier 54.5 (2004): 1565-1580. <http://eudml.org/doc/116152>.
@article{Tang2004,
abstract = {We define a $C^*$-algebraic quantization of constant Dirac structures on tori and prove
that $O(n,n|\mathbb \{Z\})$-equivalent structures have Morita equivalent quantizations. This
completes and extends from the Poisson case a theorem of Rieffel and Schwarz.},
affiliation = {University of California, Department of Mathematics, Berkeley, CA 94720 (USA), University of California, Department of Mathematics Davis, CA 95616 (USA)},
author = {Tang, Xiang, Weinstein, Alan},
journal = {Annales de l’institut Fourier},
keywords = {Dirac structure; Poisson structure; Morita equivalence; quantization},
language = {eng},
number = {5},
pages = {1565-1580},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quantization and Morita equivalence for constant Dirac structures on tori},
url = {http://eudml.org/doc/116152},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Tang, Xiang
AU - Weinstein, Alan
TI - Quantization and Morita equivalence for constant Dirac structures on tori
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1565
EP - 1580
AB - We define a $C^*$-algebraic quantization of constant Dirac structures on tori and prove
that $O(n,n|\mathbb {Z})$-equivalent structures have Morita equivalent quantizations. This
completes and extends from the Poisson case a theorem of Rieffel and Schwarz.
LA - eng
KW - Dirac structure; Poisson structure; Morita equivalence; quantization
UR - http://eudml.org/doc/116152
ER -
References
top- J. Block, E. Getzler, Quantization of foliations, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, (New York, 1991) Vol. 1, 2 (1992), 471-487, World Scientific, River Edge, NJ Zbl0812.58028
- A. Connes, Noncommutative Geometry, (1994), Academic Press, San Diego Zbl0818.46076MR1303779
- A. Connes, M.R. Douglas, A. Schwarz, Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) Zbl1018.81052MR1613978
- T.J. Courant, Dirac manifolds, Trans. A.M.S 319 (1990), 631-661 Zbl0850.70212MR998124
- G. A. Elliott, On the K-theory of the algebras generated by a projective representation of a torsion-free discrete abelian group, Operator Algebras and Group Representations (1984), 157-184, Pitman, London Zbl0542.46030
- G.A. Elliott, H. Li, Morita equivalence of smooth noncommutative tori Zbl1137.46030
- H. Kajiura, Kronecker foliation, -branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys 8 (2002) Zbl1226.81097MR1942142
- M. Kontsevich, Homological algebra of mirror symmetry., Proceedings of the International Congress of Mathematicians (Zürich, 1994) Vol. 1, 2 (1995), 120-139, Birkhäuser, Basel Zbl0846.53021
- H. Li, Strong Morita equivalence of higher-dimensional noncommutative tori Zbl1063.46057MR2099203
- F. Lizzi, R. Szabo, Noncommutative Geometry and String Duality, Conf. Proc. Corfu Summer Institute on Elementary Particle Physics (Kerkyra, 1998) (1999), Trieste Zbl0994.81111
- P.S. Muhly, J.N. Renault, D.P. Williams, Equivalence and isomorphism for groupoid -algebras, J. Operator Theory 17 (1987), 3-22 Zbl0645.46040MR873460
- S. Mukai, Duality between and with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175 Zbl0417.14036MR607081
- M.A. Rieffel, Morita equivalence for -algebras and -algebras, J. Pure Appl. Algebra 5 (1974), 51-96 Zbl0295.46099MR367670
- M.A. Rieffel, -algebras associated with irrational rotations, Pacific. J. Math. 93 (1981), 415-429 Zbl0499.46039MR623572
- M.A. Rieffel, Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988), 257-338 Zbl0663.46073MR941652
- M.A. Rieffel, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989), 531-562 Zbl0679.46055MR1002830
- M.A. Rieffel, A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999), 289-299 Zbl0968.46060MR1687145
- A. Schwarz, Morita equivalence and duality, Lett. Math. Phys 50 (1999), 309-321 Zbl0967.58004MR1663471
- X. Tang, Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids Zbl1119.53061
- A. Weinstein, Symplectic groupoids, geometric quantization, and irrational rotation algebras, Symplectic geometry, groupoids, and integrable systems, Séminaire sud-Rhodanien de géométrie à Berkeley (1989) (1991), 281-290, Springer Zbl0731.58031
- P. Xu, Noncommutative Poisson algebras, Amer. J. Math 116 (1994), 101-125 Zbl0797.58012MR1262428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.