Virtual strings
- [1] Université Louis Pasteur, IRMA, CNRS, 7 rue René Descartes, 67084 Strasbourg (France)
Annales de l'Institut Fourier (2004)
- Volume: 54, Issue: 7, page 2455-2525
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTuraev, Vladimir. "Virtual strings." Annales de l'Institut Fourier 54.7 (2004): 2455-2525. <http://eudml.org/doc/116179>.
@article{Turaev2004,
abstract = {A virtual string is a scheme of self-intersections of a closed curve on a surface. We
study algebraic invariants of strings as well as two equivalence relations on the set of
strings: homotopy and cobordism. We show that the homotopy invariants of strings form an
infinite dimensional Lie group. We also discuss connections between virtual strings and
virtual knots.},
affiliation = {Université Louis Pasteur, IRMA, CNRS, 7 rue René Descartes, 67084 Strasbourg (France)},
author = {Turaev, Vladimir},
journal = {Annales de l'Institut Fourier},
keywords = {Virtual strings; virtual knots; surfaces; cobordism; skew-symmetric matrices; Lie cobracket; virtual strings; homotopy},
language = {eng},
number = {7},
pages = {2455-2525},
publisher = {Association des Annales de l'Institut Fourier},
title = {Virtual strings},
url = {http://eudml.org/doc/116179},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Turaev, Vladimir
TI - Virtual strings
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2455
EP - 2525
AB - A virtual string is a scheme of self-intersections of a closed curve on a surface. We
study algebraic invariants of strings as well as two equivalence relations on the set of
strings: homotopy and cobordism. We show that the homotopy invariants of strings form an
infinite dimensional Lie group. We also discuss connections between virtual strings and
virtual knots.
LA - eng
KW - Virtual strings; virtual knots; surfaces; cobordism; skew-symmetric matrices; Lie cobracket; virtual strings; homotopy
UR - http://eudml.org/doc/116179
ER -
References
top- J.S. Carter, Classifying immersed curves, Proc. Amer. Math. Soc. 111 (1991), 281-287 Zbl0742.57008MR1043406
- J.S. Carter, Closed curves that never extend to proper maps of disks, Proc. Amer. Math. Soc. 113 (1991), 879-888 Zbl0733.57012MR1070511
- J.S. Carter, S. Kamada, M. Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), 311-322 Zbl1004.57007MR1905687
- N. Chaves, C. Weber, Plombages de rubans et problème des mots de Gauss, Exposition. Math. 12 (1994), 53-77 Zbl0816.57010MR1267628
- P. Cotta-Ramusino, M. Rinaldi, On the algebraic structure of link-diagrams on a -dimensional surface, Comm. Math. Phys. 138 (1991), 137-173 Zbl0734.57004MR1108039
- J.K. Francis, The folded ribbon theorem. A contribution to the study of immersed circles, Trans. Amer. Math. Soc. 141 (1969), 271-303 Zbl0182.26404MR243542
- M. Goussarov, M. Polyak, O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), 1045-1068 Zbl1006.57005MR1763963
- D. Hrencecin, L. Kauffman, On Filamentations and Virtual Knots, Topology and Its Applications 134 (2003), 23-52 Zbl1031.57008MR2005847
- F. Jaeger, Letter to the author, (21-11-1991)
- L. Kauffman, Virtual knots theory, European J. Combin. 20 (1999), 663-690 Zbl0938.57006MR1721925
- J. Przytycki, Quantum group of links in a handlebody, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) 134 (1992), 235-245, Amer. Math. Soc., Providence, RI Zbl0779.57004
- J.-P. Serre, Lie algebras and Lie groups, 1500 (1992), Springer-Verlag, Berlin Zbl0742.17008MR1176100
- V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553 Zbl0648.57003MR939474
- V. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), 635-704 Zbl0758.57011MR1142906
- N. Chaves, C. Weber, Erratum "Plombages de rubans et problème des mots de Gauss", Exposition. Math. 12 (1994) Zbl0816.57011MR1267628
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.