Skein quantization of Poisson algebras of loops on surfaces

Vladimir G. Turaev

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 6, page 635-704
  • ISSN: 0012-9593

How to cite

top

Turaev, Vladimir G.. "Skein quantization of Poisson algebras of loops on surfaces." Annales scientifiques de l'École Normale Supérieure 24.6 (1991): 635-704. <http://eudml.org/doc/82308>.

@article{Turaev1991,
author = {Turaev, Vladimir G.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {skein invariants of 3-manifolds; Jones polynomial; Poisson algebras of loops on surfaces; quantization; Lie bialgebras; Poisson Lie groups; set of free homotopy classes of loops; skein module; Wilson loop observables; infinitesimal Poisson Lie group; bi-Poisson bialgebras; biquantization},
language = {eng},
number = {6},
pages = {635-704},
publisher = {Elsevier},
title = {Skein quantization of Poisson algebras of loops on surfaces},
url = {http://eudml.org/doc/82308},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Turaev, Vladimir G.
TI - Skein quantization of Poisson algebras of loops on surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 6
SP - 635
EP - 704
LA - eng
KW - skein invariants of 3-manifolds; Jones polynomial; Poisson algebras of loops on surfaces; quantization; Lie bialgebras; Poisson Lie groups; set of free homotopy classes of loops; skein module; Wilson loop observables; infinitesimal Poisson Lie group; bi-Poisson bialgebras; biquantization
UR - http://eudml.org/doc/82308
ER -

References

top
  1. [1] V. G. DRINFELD, Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Meaning of the classical Yang-Baxter Equation (Doklady A.N. S.S.S.R., Vol. 268, 1982, pp. 285-287 ; English translation : Soviet Math. Dokl., Vol. 27, No. 1, 1983). Zbl0526.58017MR84i:58044
  2. [2] V. G. DRINFELD, Quantum Groups (Proc. Internat. Congress Math., Berkeley, 1986, Amer. Math. Soc., Providence, R.I., 1987, pp. 798-820). Zbl0667.16003MR89f:17017
  3. [3] W. M. GOLDMAN, The Symplectic Nature of Fundamental Groups of Surfaces (Adv. Math., Vol. 54, 1984, pp. 200-225). Zbl0574.32032MR86i:32042
  4. [4] W. M. GOLDMAN, Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations (Invent. Math., Vol. 85, 1986, pp. 263-302). Zbl0619.58021MR87j:32069
  5. [5] J. HOSTE and M. K. KIDWELL, Dichromatic Link Invariants, (Trans. Amer. Math. Soc., Vol. 321, 1990, pp. 197-229). Zbl0702.57002MR90m:57007
  6. [6] F. JAEGER, Composition Products and Models for the Homfly Polynomial, preprint, Grenoble, 1988. Zbl0705.57004
  7. [7] L. H. KAUFFMAN, New Invariants in the Theory of Knots (Am. Math. Mon., Vol. 95, 1988, pp. 195-242). Zbl0657.57001MR89d:57005
  8. [8] M. KONTSEVICH, Rational Conformal Field Theory and Invariants of 3-Manifolds, preprint, 1989. 
  9. [9] W. B. R. LICKORISH, Polynomials for Links (Bull. London Math. Soc., Vol. 20, 1988, pp. 558-588). Zbl0685.57001MR90d:57004
  10. [10] W. B. R. LICKORISH and K. C. MILLETT, A Polynomial Invariant of Oriented Links (Topology, Vol. 26, 1987, pp. 107-141). Zbl0608.57009MR88b:57012
  11. [11] J. H. PRZYTYCKI, Skein Modules of 3-manifolds, preprint, 1987. 
  12. [12] N. Y. RESHETIKHIN, Quantized Universal Enveloping Algebras, the Yang-Baxter Equation and Invariants of Links, I and II, L.O.M.I. preprints E-4-87 and E-17-87, Leningrad, 1988. 
  13. [13] N. Y. RESHETIKHIN and V. G. TURAEV, Invariants of 3-manifolds via Link Polynomials and Quantum Groups, (Invent. Math., Vol. 103, 1991, pp. 547-597). Zbl0725.57007MR92b:57024
  14. [14] M. A. SEMENOV-TIAN-SHANSKY, Dressing Transformations and Poisson Group Actions (Publ. Res. Inst. Math. Sci. Kyoto Univ., Vol. 21, 1985, pp. 1237-1260). Zbl0674.58038MR88b:58057
  15. [15] J.-P. SERRE, Lie Algebras and Lie Groups, Benjamin, New York-Amsterdam, 1965. Zbl0132.27803MR36 #1582
  16. [16] V. G. TURAEV, Intersections of Loops in Two-Dimensional Manifolds (Matem. Sbornik, Vol. 106, 1978, pp. 566-588 ; English translation : Math. U.S.S.R. Sbornik, Vol. 35, 1979, pp. 229-250). Zbl0422.57005MR80d:57019
  17. [17] V. G. TURAEV, Multivariable Generalizations of the Seifert form of Classical Knot (Matem. Sbornik, Vol. 116, 1981, pp. 370-397 ; English translation : Math. U.S.S.R. Sbornik, (Vol. 44, 1983, pp. 335-361). Zbl0508.57005
  18. [18] V. G. TURAEV, The Yang-Baxter Equation and Invariants of Links (Invent. Math., Vol. 92, 1988, pp. 527-553). Zbl0648.57003MR89e:57003
  19. [19] V. G. TURAEV, The Conway and Kauffman Modules of the Solid Torus (Zap. nauchn. sem. L.O.M.I., Vol. 167, 1988, pp. 79-89 ; English translation : J. Soviet. Math.). Zbl0673.57004MR90f:57012
  20. [20] V. G. TURAEV, Algebras of Loops on Surfaces, Algebras of Knots and Quantization, preprint L.O.M.I., Leningrad, 1988. 
  21. [21] J.-L. VERDIER, Groupes quantiques (d'après V. G. Drinfel'd) (Astérisque, Vol. 152-153, 1987, pp. 305-319). Zbl0645.16006MR89f:17021
  22. [22] E. WITTEN, Quantum Field Theory and the Jones Polynomial, (Comm. Math. Phys., Vol. 121, 1989, pp. 351-399). Zbl0667.57005MR90h:57009
  23. [23] S. WOLPERT, On the Symplectic Geometry of Deformations of Hyperbolic Surface (Ann. Math., Vol. 117, 1983, pp. 207-234). Zbl0518.30040MR85e:32028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.