Orderable 3-manifold groups
Steven Boyer[1]; Dale Rolfsen; Bert Wiest
- [1] UQAM, Département de mathématiques, P.O. Box 8888, Centre-ville, Montréal, H3C 3P8, Québec (Canada), UBC, Department of Mathematics, Room 121, 1984 Mathematics Road, Vancouver V6T 1Z2 B.C. (Canada), Université de Rennes 1, Institut Mathématique, Campus de Beaulieu, 35042 Rennes Cedex (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 243-288
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoyer, Steven, Rolfsen, Dale, and Wiest, Bert. "Orderable 3-manifold groups." Annales de l’institut Fourier 55.1 (2005): 243-288. <http://eudml.org/doc/116188>.
@article{Boyer2005,
abstract = {We investigate the orderability properties of fundamental groups of 3-dimensional
manifolds. Many 3-manifold groups support left-invariant orderings, including all compact
$P^2$-irreducible manifolds with positive first Betti number. For seven of the eight
geometries (excluding hyperbolic) we are able to characterize which manifolds’ groups
support a left-invariant or bi-invariant ordering. We also show that manifolds modelled
on these geometries have virtually bi-orderable groups. The question of virtual
orderability of 3-manifold groups in general, and even hyperbolic manifolds, remains
open, and is closely related to conjectures of Waldhausen and others.},
affiliation = {UQAM, Département de mathématiques, P.O. Box 8888, Centre-ville, Montréal, H3C 3P8, Québec (Canada), UBC, Department of Mathematics, Room 121, 1984 Mathematics Road, Vancouver V6T 1Z2 B.C. (Canada), Université de Rennes 1, Institut Mathématique, Campus de Beaulieu, 35042 Rennes Cedex (France)},
author = {Boyer, Steven, Rolfsen, Dale, Wiest, Bert},
journal = {Annales de l’institut Fourier},
keywords = {3-manifold; orderable group; LO-group; left-orderable group},
language = {eng},
number = {1},
pages = {243-288},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orderable 3-manifold groups},
url = {http://eudml.org/doc/116188},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Boyer, Steven
AU - Rolfsen, Dale
AU - Wiest, Bert
TI - Orderable 3-manifold groups
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 243
EP - 288
AB - We investigate the orderability properties of fundamental groups of 3-dimensional
manifolds. Many 3-manifold groups support left-invariant orderings, including all compact
$P^2$-irreducible manifolds with positive first Betti number. For seven of the eight
geometries (excluding hyperbolic) we are able to characterize which manifolds’ groups
support a left-invariant or bi-invariant ordering. We also show that manifolds modelled
on these geometries have virtually bi-orderable groups. The question of virtual
orderability of 3-manifold groups in general, and even hyperbolic manifolds, remains
open, and is closely related to conjectures of Waldhausen and others.
LA - eng
KW - 3-manifold; orderable group; LO-group; left-orderable group
UR - http://eudml.org/doc/116188
ER -
References
top- G. Baumslag, On generalised free products, Math. Z. 78 (1962), 423-438 Zbl0104.24402MR140562
- G. Bergman, Left-orderable groups which are not locally indicable, Pac. J. Math. 147 (1991), 243-248 Zbl0677.06007MR1084707
- G. Bergman, Ordering coproducts of groups and semigroups, J. Algebra 133 (1990), 313-339 Zbl0666.06012MR1067409
- R. Burns, V. Hale, A note on group rings of certain torsion-free groups, Can. Math. Bull. 15 (1972), 441-445 Zbl0244.16006MR310046
- D. Calegari, -covered foliations of hyperbolic 3-manifolds, Geometry and Topology 3 (1999), 137-153 Zbl0924.57014MR1695533
- D. Calegari, The geometry of -covered foliations, Geom. Topol. 4 (2000), 457-515 Zbl0964.57014MR1800151
- A. Casson, D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 (1994), 441-456 Zbl0840.57005MR1296353
- D. Calegari, N. Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003), 149-207 Zbl1025.57018MR1965363
- C. Champetier, V. Guirardel, Limit groups as limits of free groups: compactifying the set of free groups Zbl1103.20026
- I. Chiswell, P. Kropholler, Soluble right orderable groups are locally indicable, Canad. Math. Bull. 36 (1993), 22-29 Zbl0802.20035MR1205890
- P. F. Conrad, Right-Ordered Groups, Michigan Math. J. 6 (1959), 267-275 Zbl0099.01703MR106954
- P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), 115-150 Zbl0837.20048MR1214782
- N. Dunfield, W. Thurston, The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003), 399-441 Zbl1037.57015MR1988291
- M. Dunwoody, An equivariant sphere theorem, Bull. London Math. Soc. 17 (1985), 437-448 Zbl0592.57005MR806009
- D. Eisenbud, U. Hirsch, W. Neumann, Transverse foliations on Seifert bundles and self-homeomorphisms of the circle, Comm. Math. Helv. 56 (1981), 638-660 Zbl0516.57015MR656217
- D. B. A. Epstein, Projective planes in 3-manifolds, Proc. LMS 11 (1961), 469-484 Zbl0111.18801MR152997
- T. Farrell, Right-orderable deck transformation groups, Rocky Mtn. J. Math. 6 (1976), 441-447 Zbl0332.57004MR418078
- S. Fenley, Anosov flows in 3-manifolds, Ann. Math. 139 (1992), 79-115 Zbl0796.58039MR1259365
- R. Fenn, M. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pac. J. Math. 191 (1999), 49-74 Zbl1009.20042MR1725462
- D. Gabai, Foliations and 3-manifolds, (1990), 609-619, Kyoto Zbl0754.57008
- D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), 447-510 Zbl0785.57004MR1189862
- D. Gabai, Eight problems in the theory of foliations and laminations, 2 (1996), AMS/IP Studies in Advanced Mathematics
- A. M. Gaglione, D. Spellman, Generalisations of free groups: some questions, Comm. Algebra 22 (1994), 3159-3169 Zbl0813.20023MR1272379
- J. González-Meneses, Ordering pure braid groups on closed surfaces, Pac. J. Math. 203 (2002), 369-378 Zbl1059.20033MR1897904
- E. A. Gorin, V. Ya. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR Sbornik 7 (1969), 569-596 Zbl0211.54905
- A. Hatcher, Notes on basic 3-manifold topology
- J. Hempel, 3-manifolds, Ann. of Math Studies 86 (1976) Zbl0345.57001MR415619
- P. Hilton, U. Stammbach, A course in homological algebra, 4 (1971) Zbl0238.18006MR346025
- J. Howie, H. Short, The band-sum problem, J. London Math. Soc. 31 (1985), 571-576 Zbl0546.57001MR812788
- W. Jaco, Lectures on three-manifold topology, 43 (1980) Zbl0433.57001
- M. Jankins, The space of homomorphisms of a Fuchsian groups to , (1983)
- M. Jankins, W. Neumann, Homomorphisms of Fuchsian groups to , Comm. Math. Helv. 60 (1985), 480-495 Zbl0598.57007MR814153
- M. Jankins, W. Neumann, Rotation numbers and products of circle homomorphisms, Math. Ann. 271 (1985), 381-400 Zbl0543.57019MR787188
- D. Kim, D. Rolfsen, An ordering for groups of pure braids and fibre-type hyperplane arrangements, Canad. J. Math. 55 (2003), 822-838 Zbl1047.20027MR1994074
- R. H. La, Grange, A. H. Rhemtulla, A remark on the group rings of order preserving permutation groups, Canad. Math. Bull 11 (1968), 679-680 Zbl0177.04502MR240183
- P. Linnell, Left ordered amenable and locally indicable groups, J. London Math. Soc. 60 (1999), 133-142 Zbl0940.20047MR1721820
- D. Long, Planar kernels in surface groups, Quart. J. Math. Oxford 35 (1984), 305-310 Zbl0556.57006MR755667
- J. Luecke, Finite covers of 3-manifolds containing essential tori, Trans. Amer. Math. Soc. 310 (1988), 381-391 Zbl0706.57009MR965759
- R. Lyndon, P. Schupp, Combinatorial group theory, 89 (1977) Zbl0368.20023MR577064
- W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, (1976), New York Zbl0362.20023MR422434
- A. I. Mal'cev, On the embedding of group algebras in division algebras, Dokl. Akad. Nauk SSSR 60 (1948), 1944-1501 Zbl0034.30901MR25457
- W. Meeks, L. Simon, S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. 116 (1982), 621-659 Zbl0521.53007MR678484
- R. Botto, Mura, A. H. Rhemtulla, Orderable groups, 27 (1977), New York-Basel Zbl0358.06038
- R. Naimi, Foliations transverse to fibers of Seifert manifolds, Comm. Math. Helv. 69 (1994), 155-162 Zbl0797.55009MR1259611
- B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252 Zbl0035.30401MR32593
- S. P. Novikov, Topology of foliations, Trans. Moscow Math. Soc. 14 (1965), 268-304 Zbl0247.57006MR200938
- D. S. Passman, The algebraic structure of group rings, (1977) Zbl0368.16003MR470211
- B. Perron, D. Rolfsen, On orderability of fibred knot groups Zbl1046.57008MR1990838
- A. Rhemtulla, D. Rolfsen, Local indicability in ordered groups, braids and elementary amenable groups Zbl0996.20024MR1900863
- R. Roberts, J. Shareshian, M. Stein, Infinitely many hyperbolic 3-manifolds which contain no Reebless Foliation to appear Zbl1012.57022
- R. Roberts, M. Stein, Exceptional Seifert group actions on , J. Knot Th. Ram. 8 (1999), 241-247 Zbl0936.57014MR1687537
- D. Rolfsen, B. Wiest, Free group automorphisms, invariant orderings and applications, Algebraic and Geometric Topology 1 (2001), 311-319 Zbl0985.57006MR1835259
- D. Rolfsen, J. Zhu, Braids, ordered groups and zero divisors, J. Knot Theory and Ramifications 7 (1998), 837-841 Zbl0928.20031MR1643939
- C. Rourke, B. Wiest, Order automatic mapping class groups, Pac. J. Math. 194 (2000), 209-227 Zbl1016.57015MR1756636
- G. P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc. 7 (1973), 246-250 Zbl0266.57001MR326737
- G. P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- G. P. Scott, There are no fake Seifert fibre spaces with infinite , Ann. of Math. 117 (1983), 35-70 Zbl0516.57006MR683801
- G. P. Scott, T. Wall, Topological methods in group theory, Homological group theory, 36 (1977), 137-203, London Math. Soc., Cambridge-New York Zbl0423.20023
- H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238 Zbl0006.08304
- H. Short, B. Wiest, Orderings of mapping class groups after Thurston, Ens. Math. 46 (2000), 279-312 Zbl1023.57013MR1805402
- N. Smythe, Trivial knots with arbitrary projection, J. Austral. Math. Soc. 7 (1967), 481-489 Zbl0163.18102MR220271
- W. Thurston, The geometry and topology of 3-manifolds, (1977)
- W. Thurston, Three-manifolds, foliations and circles, I, (1997) MR1435975
- J. Tollefson, The compact 3-manifolds covered by , Proc. Amer. Math. Soc. 45 (1974), 461-462 Zbl0294.57006MR346792
- A. A. Vinogradov, On the free product of ordered groups, Mat. Sb. 67 (1949), 163-168 Zbl0038.15904MR31482
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.