The Levi problem for complex spaces.


Mathematische Annalen (1961)

  • Volume: 142, page 355-365
  • ISSN: 0025-5831; 1432-1807/e

How to cite


NARASIMHAN, R.. "The Levi problem for complex spaces.." Mathematische Annalen 142 (1961): 355-365. <>.

author = {NARASIMHAN, R.},
journal = {Mathematische Annalen},
keywords = {complex functions},
pages = {355-365},
title = {The Levi problem for complex spaces.},
url = {},
volume = {142},
year = {1961},

TI - The Levi problem for complex spaces.
JO - Mathematische Annalen
PY - 1961
VL - 142
SP - 355
EP - 365
KW - complex functions
UR -
ER -

Citations in EuDML Documents

  1. Giuseppe Vigna Suria, q -pseudoconvex and q -complete domains
  2. G. Sorani, Homologie des q -paires de Runge
  3. François Norguet, Théorèmes de finitude pour la cohomologie des espaces complexes
  4. A. Fabiano, P. Pietramala, Sur la convexité holomorphe. Théorie locale
  5. Mihnea Coltoiu, The Levi problem for cohomology classes
  6. Giovanni Forni, Funtorialità di una classe di domini q -Runge
  7. J. P. Ramis, Théorèmes de séparation et de finitude pour l’homologie et la cohomologie des espaces ( p , q ) -convexes-concaves
  8. Franc Forstneric, Extending holomorphic mappings from subvarieties in Stein manifolds
  9. J. L. Ermine, Cohérence de certaines images directes à supports propres dans le cas d’un morphisme fortement p -convexe
  10. Aldo Andreotti, Hans Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.