Sign functions of imaginary quadratic fields and applications
- [1] Université de Franche-Comte, laboratoire de mathématique, 16 Route de Gray, 25030 Besançon cedex (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 753-772
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOukhaba, Hassan. "Sign functions of imaginary quadratic fields and applications." Annales de l’institut Fourier 55.3 (2005): 753-772. <http://eudml.org/doc/116207>.
@article{Oukhaba2005,
abstract = {We propose a definition of sign of imaginary quadratic fields. We give an example of such
functions, and use it to define new invariants that are roots of the classical
Ramachandra invariants. Also we introduce signed ordinary distributions and compute their
signed cohomology by using Anderson's theory of double complex.},
affiliation = {Université de Franche-Comte, laboratoire de mathématique, 16 Route de Gray, 25030 Besançon cedex (France)},
author = {Oukhaba, Hassan},
journal = {Annales de l’institut Fourier},
keywords = {sign function; narrow ray class field; Shimura reciprocity law; ordianary $s$-ditributions; Anderson’s resolution; spectrales sequences; ordinary -distributions; Anderson's resolution; spectral sequences},
language = {eng},
number = {3},
pages = {753-772},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sign functions of imaginary quadratic fields and applications},
url = {http://eudml.org/doc/116207},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Oukhaba, Hassan
TI - Sign functions of imaginary quadratic fields and applications
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 753
EP - 772
AB - We propose a definition of sign of imaginary quadratic fields. We give an example of such
functions, and use it to define new invariants that are roots of the classical
Ramachandra invariants. Also we introduce signed ordinary distributions and compute their
signed cohomology by using Anderson's theory of double complex.
LA - eng
KW - sign function; narrow ray class field; Shimura reciprocity law; ordianary $s$-ditributions; Anderson’s resolution; spectrales sequences; ordinary -distributions; Anderson's resolution; spectral sequences
UR - http://eudml.org/doc/116207
ER -
References
top- G. W. Anderson, A double complex for computing the sign-cohomology of the universal ordinary distribution, Recent progress in algebra (Taejon/Seoul, 1997) 199 (1997), 1-27, Amer. Math. Soc., Providence, RI Zbl0939.11035
- G. W. Anderson, Kronecker-Weber plus epsilon, Duke Math. J. 114 (2002), 439-475 Zbl1056.11060MR1924570
- S. Bae, L. Yin, Epsilon extensions over global function fields, Manuscripta Math. 110 (2003), 313-324 Zbl1098.11058MR1969003
- J.-R. Belliard, H. Oukhaba, Sur la torsion de la distribution ordinaire universelle attachée à un corps de nombres, Manuscripta Math. 106 (2001), 117-130 Zbl1011.11076MR1860983
- K. S. Brown, Cohomology of groups, 87 (1982), Springer-Verlag, New-York Zbl0584.20036MR672956
- F. Hajir, F. R. Villegas, Explicit elliptic units, I, Duke Math. J. 90 (1997), 495-521 Zbl0898.11025MR1480544
- D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239 Zbl0569.12008MR795715
- D. R. Hayes, A brief introduction to Drinfel'd modules, The arithmetic of function fields (Columbus, OH, 1991) 2 (1991), 1-32, Gruyter, Berlin Zbl0793.11015
- A. Hayward, Congruences satisfied by Stark units, (2004)
- P. J. Hilton, U. Stammbach, A course in homological algebra, 4 (1971), Springer-Verlag, New York Zbl0238.18006MR346025
- D. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179-202 Zbl0409.12021MR545171
- D. S. Kubert, Product formulae on elliptic curves, Invent. Math. 117 (1994), 227-273 Zbl0834.14016MR1273265
- D. S. Kubert, S. Lang, Modular units, 244 (1981), Springer-Verlag, New York Zbl0492.12002MR648603
- H. Oukhaba, Index formulas for ramified elliptic units, Compositio Math. 137 (2003), 1-22 Zbl1045.11043MR1981934
- Y. Ouyang, Group cohomology of the universal ordinary distribution, J. Reine Angew. Math. 537 (2001), 1-32 Zbl1008.11042MR1856256
- Y. Ouyang, The universal norm distribution and Sinnott's index formula, Proc. Amer. Math. Soc. 130 (2002), 2203-2213 Zbl0997.11089MR1896399
- G. Robert, Unités elliptiques, 36 (1973), Bull. Soc. Math. France Zbl0314.12006MR469889
- G. Robert, La racine 12-ième canonique , (1992), 209-232, Birkhäuser, Boston Zbl0751.11025
- R. Schertz, Niedere Potenzen elliptischer Einheiten, Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986) (1986), 67-88, Nagoya university Zbl0615.12013
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 2 108 (1978), 107-134 Zbl0395.12014MR485778
- H. M. Stark, -functions at , IV, First derivatives at , Adv. in Math. 35 (1980), 197-235 Zbl0475.12018MR563924
- L. Yin, Index-class number formulas over global function fields, Compositio Math. 109 (1997), 49-66 Zbl0902.11023MR1473605
- L. Yin, On the index of cyclotomic units in characteristic and its applications, J. Number Theory 63 (1997), 302-324 Zbl0896.11023MR1443764
- L. Yin, Distributions on a global field, J. Number Theory 80 (2000), 154-167 Zbl1005.11062MR1735653
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.