Holomorphic Morse Inequalities on Manifolds with Boundary
- [1] Chalmers University of Technology, Department of Mathematics, Eklandag. 86, 412 96 Göteborg (Suède)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 4, page 1055-1103
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerman, Robert. "Holomorphic Morse Inequalities on Manifolds with Boundary." Annales de l’institut Fourier 55.4 (2005): 1055-1103. <http://eudml.org/doc/116214>.
@article{Berman2005,
abstract = {Let $X$ be a compact complex manifold with boundary and let $L^\{k\}$ be a high power of a
hermitian holomorphic line bundle over $X.$ When $X$ has no boundary, Demailly’s
holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault
cohomology groups with values in $L^\{k\},$ in terms of the curvature of $L.$ We extend
Demailly’s inequalities to the case when $X$ has a boundary by adding a boundary term
expressed as a certain average of the curvature of the line bundle and the Levi curvature
of the boundary. Examples are given that show that the inequalities are sharp.},
affiliation = {Chalmers University of Technology, Department of Mathematics, Eklandag. 86, 412 96 Göteborg (Suède)},
author = {Berman, Robert},
journal = {Annales de l’institut Fourier},
keywords = {Line bundles; cohomology; harmonic forms; holomorphic sections; Bergman kernel; line bundles},
language = {eng},
number = {4},
pages = {1055-1103},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic Morse Inequalities on Manifolds with Boundary},
url = {http://eudml.org/doc/116214},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Berman, Robert
TI - Holomorphic Morse Inequalities on Manifolds with Boundary
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1055
EP - 1103
AB - Let $X$ be a compact complex manifold with boundary and let $L^{k}$ be a high power of a
hermitian holomorphic line bundle over $X.$ When $X$ has no boundary, Demailly’s
holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault
cohomology groups with values in $L^{k},$ in terms of the curvature of $L.$ We extend
Demailly’s inequalities to the case when $X$ has a boundary by adding a boundary term
expressed as a certain average of the curvature of the line bundle and the Levi curvature
of the boundary. Examples are given that show that the inequalities are sharp.
LA - eng
KW - Line bundles; cohomology; harmonic forms; holomorphic sections; Bergman kernel; line bundles
UR - http://eudml.org/doc/116214
ER -
References
top- A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France 91 (1963), 1-38 Zbl0113.06403MR152674
- A. Andreotti, H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259 Zbl0106.05501MR150342
- V.I. Arnold, Symplectic Geometry, Dynamical systems IV 4 (2001), 1-138, Springer, Berlin
- R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math Z. 248 (2004), 325-344 Zbl1066.32002MR2088931
- R. Berman, Super Toeplitz operators on holomorphic line bundles Zbl1104.32001
- B. Berndtsson, Bergman kernels related to Hermitian line bundles over compact comlex manifolds, 332 (2003), Amer. Math. Soc., Providence, RI Zbl1038.32003MR2016088
- T. Bouche, Inégalité de Morse pour la -cohomologie sur une variété non-compacte, Ann. Sci. École Norm. Sup 22 (1989), 501-513 Zbl0693.32016MR1026747
- S.S. Chern, J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271 Zbl0302.32015MR425155
- J.-P. Demailly, Champs magnétiques et inégalité de Morse pour la -cohomologie, Ann. Inst. Fourier 355 (1985), 185-229 Zbl0565.58017MR799607
- J.-P. Demailly, Holomorphic Morse inequalities, 2 (1989), 93-114, Santa Cruz, CA Zbl0755.32008
- J.-P. Demailly, Introduction à la théorie de Hodge, Transcendental methods in algebraic geometry. Lectures given at the 3rd C.I.M.E. Session held in Cetraro, July 4-12, 1994 1646 (1994), 4-12, Springer-Verlag
- Y. Eliashberg, A few remarks about symplectic filling, Geometry and topology 8 (2004), 277-293 Zbl1067.53070MR2023279
- C. Epstein, Geometric bounds on the relative index, J. Inst. Math. Jussieu 1 (2002) Zbl1038.32030MR1956056
- G.B. Folland J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, 75 (1972), Princeton University Press Zbl0247.35093MR461588
- E. Getzler, An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom. 29 (1989), 231-244 Zbl0714.58053MR982172
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1994), John Wiley & Sons, Inc., New York Zbl0836.14001MR1288523
- M. Gromov, Kähler hyperbolicity and -Hodge theory, J. Differential Geom. 33 (1991), 263-292 Zbl0719.53042MR1085144
- G. Henkin, C. Epstein, Stability of embeddings for prseudoconcave surfaces and their boundaries, Acta Math. 185 (2000), 161-237 Zbl0983.32035MR1819994
- L. Hörmander, estimates and existence theorems for the -operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
- R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, 48 (2004), Springer-Verlag, Berlin Zbl1093.14501MR2095471
- G. Marinescu, Asymptotic Morse inequalities for Pseudoconcave manifolds, Ann. Scuola. Norm. Sup. Pisa CL Sci. 23-1 (1996), 27-55 Zbl0867.32004MR1401416
- G. Marinescu, Existence of holomorphic sections and perturbation of positive line bundles over -concave manifolds
- H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis) (1965), 242-256, Springer-Verlag, New York Zbl0143.30301
- W. Rudin, Real and complex analysis, (1987), McGraw-Hill Book Company, international edition Zbl0925.00005MR924157
- Y.T. Siu, Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) 1111 (1985), 169-192, Springer, Berlin Zbl0577.32032
- Y.T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), 431-452 Zbl0577.32031MR755233
- R.O. Wells Jr., Differential analysis on complex manifolds, 65 (1980), Springer-Verlag, New York-Berlin Zbl0435.32004MR608414
- E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661-692 Zbl0499.53056MR683171
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.