Holomorphic Morse Inequalities on Manifolds with Boundary

Robert Berman[1]

  • [1] Chalmers University of Technology, Department of Mathematics, Eklandag. 86, 412 96 Göteborg (Suède)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 4, page 1055-1103
  • ISSN: 0373-0956

Abstract

top
Let X be a compact complex manifold with boundary and let L k be a high power of a hermitian holomorphic line bundle over X . When X has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in L k , in terms of the curvature of L . We extend Demailly’s inequalities to the case when X has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the boundary. Examples are given that show that the inequalities are sharp.

How to cite

top

Berman, Robert. "Holomorphic Morse Inequalities on Manifolds with Boundary." Annales de l’institut Fourier 55.4 (2005): 1055-1103. <http://eudml.org/doc/116214>.

@article{Berman2005,
abstract = {Let $X$ be a compact complex manifold with boundary and let $L^\{k\}$ be a high power of a hermitian holomorphic line bundle over $X.$ When $X$ has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in $L^\{k\},$ in terms of the curvature of $L.$ We extend Demailly’s inequalities to the case when $X$ has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the boundary. Examples are given that show that the inequalities are sharp.},
affiliation = {Chalmers University of Technology, Department of Mathematics, Eklandag. 86, 412 96 Göteborg (Suède)},
author = {Berman, Robert},
journal = {Annales de l’institut Fourier},
keywords = {Line bundles; cohomology; harmonic forms; holomorphic sections; Bergman kernel; line bundles},
language = {eng},
number = {4},
pages = {1055-1103},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic Morse Inequalities on Manifolds with Boundary},
url = {http://eudml.org/doc/116214},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Berman, Robert
TI - Holomorphic Morse Inequalities on Manifolds with Boundary
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1055
EP - 1103
AB - Let $X$ be a compact complex manifold with boundary and let $L^{k}$ be a high power of a hermitian holomorphic line bundle over $X.$ When $X$ has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in $L^{k},$ in terms of the curvature of $L.$ We extend Demailly’s inequalities to the case when $X$ has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the boundary. Examples are given that show that the inequalities are sharp.
LA - eng
KW - Line bundles; cohomology; harmonic forms; holomorphic sections; Bergman kernel; line bundles
UR - http://eudml.org/doc/116214
ER -

References

top
  1. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France 91 (1963), 1-38 Zbl0113.06403MR152674
  2. A. Andreotti, H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259 Zbl0106.05501MR150342
  3. V.I. Arnold, Symplectic Geometry, Dynamical systems IV 4 (2001), 1-138, Springer, Berlin 
  4. R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math Z. 248 (2004), 325-344 Zbl1066.32002MR2088931
  5. R. Berman, Super Toeplitz operators on holomorphic line bundles Zbl1104.32001
  6. B. Berndtsson, Bergman kernels related to Hermitian line bundles over compact comlex manifolds, 332 (2003), Amer. Math. Soc., Providence, RI Zbl1038.32003MR2016088
  7. T. Bouche, Inégalité de Morse pour la d ' ' -cohomologie sur une variété non-compacte, Ann. Sci. École Norm. Sup 22 (1989), 501-513 Zbl0693.32016MR1026747
  8. S.S. Chern, J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271 Zbl0302.32015MR425155
  9. J.-P. Demailly, Champs magnétiques et inégalité de Morse pour la d ' ' -cohomologie, Ann. Inst. Fourier 355 (1985), 185-229 Zbl0565.58017MR799607
  10. J.-P. Demailly, Holomorphic Morse inequalities, 2 (1989), 93-114, Santa Cruz, CA Zbl0755.32008
  11. J.-P. Demailly, Introduction à la théorie de Hodge, Transcendental methods in algebraic geometry. Lectures given at the 3rd C.I.M.E. Session held in Cetraro, July 4-12, 1994 1646 (1994), 4-12, Springer-Verlag 
  12. Y. Eliashberg, A few remarks about symplectic filling, Geometry and topology 8 (2004), 277-293 Zbl1067.53070MR2023279
  13. C. Epstein, Geometric bounds on the relative index, J. Inst. Math. Jussieu 1 (2002) Zbl1038.32030MR1956056
  14. G.B. Folland J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, 75 (1972), Princeton University Press Zbl0247.35093MR461588
  15. E. Getzler, An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom. 29 (1989), 231-244 Zbl0714.58053MR982172
  16. P. Griffiths, J. Harris, Principles of algebraic geometry, (1994), John Wiley & Sons, Inc., New York Zbl0836.14001MR1288523
  17. M. Gromov, Kähler hyperbolicity and L 2 -Hodge theory, J. Differential Geom. 33 (1991), 263-292 Zbl0719.53042MR1085144
  18. G. Henkin, C. Epstein, Stability of embeddings for prseudoconcave surfaces and their boundaries, Acta Math. 185 (2000), 161-237 Zbl0983.32035MR1819994
  19. L. Hörmander, L 2 estimates and existence theorems for the ¯ -operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
  20. R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, 48 (2004), Springer-Verlag, Berlin Zbl1093.14501MR2095471
  21. G. Marinescu, Asymptotic Morse inequalities for Pseudoconcave manifolds, Ann. Scuola. Norm. Sup. Pisa CL Sci. 23-1 (1996), 27-55 Zbl0867.32004MR1401416
  22. G. Marinescu, Existence of holomorphic sections and perturbation of positive line bundles over q -concave manifolds 
  23. H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis) (1965), 242-256, Springer-Verlag, New York Zbl0143.30301
  24. W. Rudin, Real and complex analysis, (1987), McGraw-Hill Book Company, international edition Zbl0925.00005MR924157
  25. Y.T. Siu, Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) 1111 (1985), 169-192, Springer, Berlin Zbl0577.32032
  26. Y.T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), 431-452 Zbl0577.32031MR755233
  27. R.O. Wells Jr., Differential analysis on complex manifolds, 65 (1980), Springer-Verlag, New York-Berlin Zbl0435.32004MR608414
  28. E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661-692 Zbl0499.53056MR683171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.