Modulation of the Camassa-Holm equation and reciprocal transformations
Simonetta Abenda[1]; Tamara Grava
- [1] Università degli Studi di Bologna, Dipartimento di Matematica e CIRAM, (Italie), SISSA, Via Beirut 9, Trieste (Italie)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 1803-1834
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAbenda, Simonetta, and Grava, Tamara. "Modulation of the Camassa-Holm equation and reciprocal transformations." Annales de l’institut Fourier 55.6 (2005): 1803-1834. <http://eudml.org/doc/116234>.
@article{Abenda2005,
abstract = {We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH)
equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian
structure. Furthermore they are connected by a reciprocal transformation to the
modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation.
The reciprocal transformation is generated by the Casimir of the second Poisson bracket
of the KdV averaged flow. We show that the geometry of the bi-Hamiltonian structure of
the KdV and CH modulation equations are quite different: indeed the KdV averaged bi-
Hamiltonian structure can always be related to a semisimple Frobenius manifold while the
CH one cannot.},
affiliation = {Università degli Studi di Bologna, Dipartimento di Matematica e CIRAM, (Italie), SISSA, Via Beirut 9, Trieste (Italie)},
author = {Abenda, Simonetta, Grava, Tamara},
journal = {Annales de l’institut Fourier},
keywords = {Camassa-Holm equation; Korteweg de Vries hierarchy; modulation equations; Whitham equations; reciprocal transformations; Hamiltonian structures},
language = {eng},
number = {6},
pages = {1803-1834},
publisher = {Association des Annales de l'Institut Fourier},
title = {Modulation of the Camassa-Holm equation and reciprocal transformations},
url = {http://eudml.org/doc/116234},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Abenda, Simonetta
AU - Grava, Tamara
TI - Modulation of the Camassa-Holm equation and reciprocal transformations
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1803
EP - 1834
AB - We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH)
equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian
structure. Furthermore they are connected by a reciprocal transformation to the
modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation.
The reciprocal transformation is generated by the Casimir of the second Poisson bracket
of the KdV averaged flow. We show that the geometry of the bi-Hamiltonian structure of
the KdV and CH modulation equations are quite different: indeed the KdV averaged bi-
Hamiltonian structure can always be related to a semisimple Frobenius manifold while the
CH one cannot.
LA - eng
KW - Camassa-Holm equation; Korteweg de Vries hierarchy; modulation equations; Whitham equations; reciprocal transformations; Hamiltonian structures
UR - http://eudml.org/doc/116234
ER -
References
top- S. Abenda, Yu. Fedorov, On the weak Kowalevski-Painlevé property for hyperelliptically separable systems, Acta Appl. Math. 60 (2000), 137-178 Zbl0984.37068MR1773961
- M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), 249-315 Zbl0408.35068MR450815
- M. Adler, P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras and curves, Adv. in Math. 38 (1980), 318-379 Zbl0455.58017MR597730
- M. Adler, Yu. Fedorov, Wave solutions of evolution equations and Hamiltonian flow on nonlinear subvarieties of generalized Jacobians, J. Phys. A 33 (2000), 8409-8425 Zbl0960.37036MR1803797
- M. Alber, R. Camassa, Yu. Fedorov, D.D. Holm, J.E. Marsden, The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type, Comm. Math. Phys. 221 (2001), 197-227 Zbl1001.37062MR1846907
- R. Beals, D.H. Sattinger, J. Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154 (2000), 229-257 Zbl0968.35008MR1784675
- R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 Zbl0972.35521MR1234453
- A. Constantin, Quasi-periodicity with respect to time of spatially periodic finite-gap solutions of the Camassa-Holm equation, Bull. Sci. Math. 122 (1998), 487-494 Zbl0923.35126MR1653462
- A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 953-970 Zbl0999.35065MR1875310
- A. Constantin, H.P. Mc Kean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 Zbl0940.35177MR1686969
- S.Yu. Dobrokhotov, V.P. Maslov, Multiphase asymptotics of non-linear partial differential equations with a small parameter, Soviet Sci. Rev. Math. Phys. Rev. 3 (1982), 221-311 Zbl0551.35072MR704031
- B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44 (1989), 35-124 Zbl0712.58032MR1037010
- B.A. Dubrovin, Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory. Surveys in differential geometry: integral [integrable] systems, Surv. Differ. Geom., IV (1998), 213-238, Int. Press, Boston, MA Zbl0947.35117
- B.A. Dubrovin, Geometry of D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065
- H.R. Dullin, G.A. Gottwald, D.D. Holm, Camassa-Holm, Korteweg-de Vries and other asymptotically equivalent equations for shallow water waves. In memoriam Prof. Philip Gerald Drazin (1934-2002), Fluid Dynam. Res. 33, 73-95 Zbl1032.76518MR1995028
- O.I. Mokhov, E.V. Ferapontov, Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature, Russian Math. Surveys 45 (1990), 218-219 Zbl0712.35080MR1071942
- E.V. Ferapontov, Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, 170 (1995), 33-58, Amer. Math. Soc., Providence RI Zbl0845.58029
- E.V. Ferapontov, M.V. Pavlov, Reciprocal tranformations of Hamiltonian operators of hydrodynamic type: nonlocal Hamiltonian formalism for nonlinearly degenerate systems, J. Math. Phys. 44 (2003), 1150-1172 Zbl1061.37046MR1958260
- H. Flaschka, M.G. Forest, D.W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equations, Comm. Pure Appl. Math. 33 (1980), 739-784 Zbl0454.35080MR596433
- A.S. Fokas, B. Fuchssteiner, Bäcklund transformations for hereditary symmetries, Nonlinear Anal. 5 (1981), 423-432 Zbl0491.35007MR611653
- B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear-equations: generalizations of the Camassa-Holm equation, Physica D 95 (1996), 229-243 Zbl0900.35345MR1406283
- F. Gesztesy, H. Helge Holden, Real-Valued Algebro-Geometric Solutions of the Camassa-Holm hierarchy, 24 pp. Zbl1153.37427MR1993416
- D. Korotkin, Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), 335-364 Zbl1059.32002MR2060367
- I.M. Krichever, The averaging method for two-dimensional integrable equations, Funct. Anal. Appl. 22 (1988), 200-213 Zbl0688.35088MR961760
- W.D. Hayes, Group velocity and nonlinear dispersive wave propagation, Proc. Royal Soc. London Ser. A 332 (1973), 199-221 Zbl0271.76006MR337134
- P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. III, Comm. Pure Appl. Math. 36 (1983), 809-829 Zbl0527.35074MR720595
- H.P. McKean, The Liouville correspondence between the Korteweg-de Vries and the Camassa-Holm hierarchies. Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math. 56 (2003), 998-1015 Zbl1037.37030MR1990485
- A.Ya. Maltsev, S.P. Novikov, On the local systems Hamiltonian in the weakly non-local Poisson brackets, Phys. D 156 (2001), 53-80 Zbl0991.37041MR1855607
- A.Ya. Maltsev, Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type, 64 pp. Zbl1138.37340MR2116628
- A.Ya. Maltsev
- A.Ya. Maltsev, M.V. Pavlov, On Whitham's averaging method, Funct. Anal. Appl. 29 (1995), 6-19 Zbl0843.35018MR1328535
- M.V. Pavlov, S.P. Tsarev, Tri-Hamiltonian structures of Egorov systems of hydrodynamic type (Russian), Funktsional. Anal. i Prilozhen. 37 (2003), 32-45 Zbl1019.37048MR1988008
- F.R. Tian, Oscillations of the zero dispersion limit of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 46 (1993), 1093-1129 Zbl0810.35114MR1225894
- F.R. Tian, The initial value problem for the Whitham averaged system, Comm. Math. Phys. 166 (1994), 79-115 Zbl0812.35131MR1309542
- S.P. Tsarev, Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Dokl. Akad. Nauk. SSSR 282 (1985), 534-537 Zbl0605.35075MR796577
- P. Vanhaecke, Integrable systems and symmetric product of curves, Math. Z. 227 (1998), 93-127 Zbl0909.58022MR1605385
- G.B. Whitham, A general approach to linear and nonlinear dispersive waves using a Lagrangian, J. Fluid. Mech. 22 (1965), 273-283 Zbl0125.44202MR182236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.