The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI
Henrik Aratyn[1]; Johan van de LEUR
- [1] University of Illinois at Chicago, department of physics, 845 W. Taylor St., Chicago IL 60607-7059 (USA), University of Utrecht, Mathematical Institute, P.O. Box 80010, 3508 TA Utrecht (The Netherlands)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 1871-1903
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAratyn, Henrik, and van de LEUR, Johan. "The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI." Annales de l’institut Fourier 55.6 (2005): 1871-1903. <http://eudml.org/doc/116237>.
@article{Aratyn2005,
abstract = {Equivalence is established between a special class of Painlevé VI equations parametrized
by a conformal dimension $\mu $, time dependent Euler top equations, isomonodromic
deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function
and solutions of the Euler top equations are explicitly constructed in terms of Wronskian
solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy
by means of Grassmannian formulation. These Wronskian solutions give rational solutions
to the Painlevé VI equation for $\mu =1,2,\{\ldots \} $},
affiliation = {University of Illinois at Chicago, department of physics, 845 W. Taylor St., Chicago IL 60607-7059 (USA), University of Utrecht, Mathematical Institute, P.O. Box 80010, 3508 TA Utrecht (The Netherlands)},
author = {Aratyn, Henrik, van de LEUR, Johan},
journal = {Annales de l’institut Fourier},
keywords = {KP hierarchy; Grassmanian; Frobenius manifold; isomonodromic deformation; painlevé VI; KP (CKP) hierarchy; Bäcklund-Darboux transformation},
language = {eng},
number = {6},
pages = {1871-1903},
publisher = {Association des Annales de l'Institut Fourier},
title = {The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI},
url = {http://eudml.org/doc/116237},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Aratyn, Henrik
AU - van de LEUR, Johan
TI - The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1871
EP - 1903
AB - Equivalence is established between a special class of Painlevé VI equations parametrized
by a conformal dimension $\mu $, time dependent Euler top equations, isomonodromic
deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function
and solutions of the Euler top equations are explicitly constructed in terms of Wronskian
solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy
by means of Grassmannian formulation. These Wronskian solutions give rational solutions
to the Painlevé VI equation for $\mu =1,2,{\ldots } $
LA - eng
KW - KP hierarchy; Grassmanian; Frobenius manifold; isomonodromic deformation; painlevé VI; KP (CKP) hierarchy; Bäcklund-Darboux transformation
UR - http://eudml.org/doc/116237
ER -
References
top- H. Aratyn, J.F. Gomes, J.W. van de Leur, A.H. Zimerman, WDVV equations, Darboux-Egoroff metric and the dressing method, (2002) Zbl1096.53054MR2170155
- H. Aratyn, J. van de Leur, Integrable structures behind WDVV equations, 134 (2003), 14-26, [arXiv:hep-th/0111243] Zbl1068.37047
- H. Aratyn, J. van de Leur, Solutions of the WDVV Equations and Integrable Hierarchies of KP Type, Commun. Math. Phys. 239 (2003), 155-182 Zbl1119.37043MR1997119
- H. Aratyn, E. Nissimov, S. Pacheva, Multi-component matrix KP hierarchies as symmetry-enhanced scalar KP hierarchies and their Darboux-Bäcklund solutions, in Bäcklund and Darboux transformations., The geometry of solitons (Halifax, NS, 1999) 29 (2001), 109-120, Amer. Math. Soc., Providence, RI Zbl0999.37041
- E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. 6. KP hierarchies of orthogonal and symplectic type, J. Phys. Soc., Japan 50 (1981), 3813-3818 Zbl0571.35102MR638808
- B. Dubrovin, Integrable systems and classification of 2-dimensional topological field theories, Integrable Systems, proceedings of Luminy 1991 conference dedicated to the memory of J.-L. Verdier, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach (1993), 313-359, Birkhäuser Zbl0824.58029
- B. Dubrovin, Geometry on 2D topological field theories, Integrable Systems and Quantum Groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer Berlin Zbl0841.58065
- B. Dubrovin, M. Mazzocco, Monodromy of certain Painlevé VI trascendents and reflection groups, Invent. Math. 141 (2000), 55-147 Zbl0960.34075MR1767271
- B. Dubrovin, Y.J. Zhang, Frobenius manifolds and Virasoro constraints., Selecta Math. (N.S.) 5 (1999), 423-466 Zbl0963.81066MR1740678
- G. F. Helminck, J. W. van de Leur, Geometric Bäcklund-Darboux transformations for the KP hierarchy, Publ. Res. Inst. Math. Sci. 37 (2001), 479-519 Zbl1028.37043MR1865402
- G. F. Helminck, J. W. van de Leur, An analytic description of the vector constrained KP hierarchy, Commun. Math Phys. 193 (1998), 627-641 Zbl0907.35115MR1624847
- G. F. Helminck, J. W. van de Leur, Constrained and Rational Reductions of the KP hierarchy, Supersymmetry and Integrable Models 502 (1998), 167-182 Zbl0901.35088
- N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. 42 (1995), 30-112 Zbl0861.53049MR1350695
- N. J. Hitchin, Poncelet polygons and the Painlevé transcendents, (1996), 151-185, Oxford University Press, Bombay Zbl0893.32018
- N. J. Hitchin, A new family of Einstein metrics, manifolds and geometry, (1996), 190-222, Cambridge Univ. Press, Cambridge Zbl0858.53038
- M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients I, Physica 2D 2 (1981), 306-352 Zbl1194.34167MR630674
- M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients II, Physica 2D 3 (1981), 407-448 Zbl1194.34166MR625446
- M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients III, Physica 2D 4 (1981), 26-46 Zbl1194.34169MR636469
- M. Jimbo, M., T. Miwa, Solitons and Infinite Dimensional Lie Algebras, Publ. RIMS, Kyoto Univ. 19 (1983), 943-1001 Zbl0557.35091MR723457
- V.G. Kac, J.W. van de Leur, The -component hierarchy and representation theory, Integrability, topological solitons and beyond, J. Math. Phys. 44 (2003), 3245-3293 Zbl1062.37071MR2006751
- J.W. van de Leur, Twisted Loop Group Orbit and Solutions of WDVV Equations, Internat. Math. Res. Notices 11 (2001), 551-573 Zbl0991.37042MR1836730
- J.W. van de Leur, R. Martini, The construction of Frobenius Manifolds from KP tau-Functions, Commun. Math. Phys. 205 (1999), 587-616 Zbl0940.53046MR1711265
- I.G. Macdonald, Symmetric functions and Hall polynomials. Second edition., (1995), Oxford University Press, New York Zbl0824.05059MR1354144
- G. Mahoux, Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, The Painlevé property, one century later, (1999), 35-76, Springer, New York Zbl1034.34105
- M. Mazzocco, Picard and Chazy solutions to the Painlevé VI equation, 321 (2001), 131-169, http://arxiv.org/abs/math.AG/9901054 Zbl0999.34079
- T. Shiota, Prym varieties and soliton equations, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) 7 (1989), 407-448, World Sci. Publishing, Teaneck, NJ Zbl0766.14020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.