The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI

Henrik Aratyn[1]; Johan van de LEUR

  • [1] University of Illinois at Chicago, department of physics, 845 W. Taylor St., Chicago IL 60607-7059 (USA), University of Utrecht, Mathematical Institute, P.O. Box 80010, 3508 TA Utrecht (The Netherlands)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 1871-1903
  • ISSN: 0373-0956

Abstract

top
Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension μ , time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give rational solutions to the Painlevé VI equation for μ = 1 , 2 , ...

How to cite

top

Aratyn, Henrik, and van de LEUR, Johan. "The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI." Annales de l’institut Fourier 55.6 (2005): 1871-1903. <http://eudml.org/doc/116237>.

@article{Aratyn2005,
abstract = {Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension $\mu $, time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give rational solutions to the Painlevé VI equation for $\mu =1,2,\{\ldots \} $},
affiliation = {University of Illinois at Chicago, department of physics, 845 W. Taylor St., Chicago IL 60607-7059 (USA), University of Utrecht, Mathematical Institute, P.O. Box 80010, 3508 TA Utrecht (The Netherlands)},
author = {Aratyn, Henrik, van de LEUR, Johan},
journal = {Annales de l’institut Fourier},
keywords = {KP hierarchy; Grassmanian; Frobenius manifold; isomonodromic deformation; painlevé VI; KP (CKP) hierarchy; Bäcklund-Darboux transformation},
language = {eng},
number = {6},
pages = {1871-1903},
publisher = {Association des Annales de l'Institut Fourier},
title = {The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI},
url = {http://eudml.org/doc/116237},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Aratyn, Henrik
AU - van de LEUR, Johan
TI - The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1871
EP - 1903
AB - Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension $\mu $, time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give rational solutions to the Painlevé VI equation for $\mu =1,2,{\ldots } $
LA - eng
KW - KP hierarchy; Grassmanian; Frobenius manifold; isomonodromic deformation; painlevé VI; KP (CKP) hierarchy; Bäcklund-Darboux transformation
UR - http://eudml.org/doc/116237
ER -

References

top
  1. H. Aratyn, J.F. Gomes, J.W. van de Leur, A.H. Zimerman, WDVV equations, Darboux-Egoroff metric and the dressing method, (2002) Zbl1096.53054MR2170155
  2. H. Aratyn, J. van de Leur, Integrable structures behind WDVV equations, 134 (2003), 14-26, [arXiv:hep-th/0111243] Zbl1068.37047
  3. H. Aratyn, J. van de Leur, Solutions of the WDVV Equations and Integrable Hierarchies of KP Type, Commun. Math. Phys. 239 (2003), 155-182 Zbl1119.37043MR1997119
  4. H. Aratyn, E. Nissimov, S. Pacheva, Multi-component matrix KP hierarchies as symmetry-enhanced scalar KP hierarchies and their Darboux-Bäcklund solutions, in Bäcklund and Darboux transformations., The geometry of solitons (Halifax, NS, 1999) 29 (2001), 109-120, Amer. Math. Soc., Providence, RI Zbl0999.37041
  5. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. 6. KP hierarchies of orthogonal and symplectic type, J. Phys. Soc., Japan 50 (1981), 3813-3818 Zbl0571.35102MR638808
  6. B. Dubrovin, Integrable systems and classification of 2-dimensional topological field theories, Integrable Systems, proceedings of Luminy 1991 conference dedicated to the memory of J.-L. Verdier, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach (1993), 313-359, Birkhäuser Zbl0824.58029
  7. B. Dubrovin, Geometry on 2D topological field theories, Integrable Systems and Quantum Groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer Berlin Zbl0841.58065
  8. B. Dubrovin, M. Mazzocco, Monodromy of certain Painlevé VI trascendents and reflection groups, Invent. Math. 141 (2000), 55-147 Zbl0960.34075MR1767271
  9. B. Dubrovin, Y.J. Zhang, Frobenius manifolds and Virasoro constraints., Selecta Math. (N.S.) 5 (1999), 423-466 Zbl0963.81066MR1740678
  10. G. F. Helminck, J. W. van de Leur, Geometric Bäcklund-Darboux transformations for the KP hierarchy, Publ. Res. Inst. Math. Sci. 37 (2001), 479-519 Zbl1028.37043MR1865402
  11. G. F. Helminck, J. W. van de Leur, An analytic description of the vector constrained KP hierarchy, Commun. Math Phys. 193 (1998), 627-641 Zbl0907.35115MR1624847
  12. G. F. Helminck, J. W. van de Leur, Constrained and Rational Reductions of the KP hierarchy, Supersymmetry and Integrable Models 502 (1998), 167-182 Zbl0901.35088
  13. N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. 42 (1995), 30-112 Zbl0861.53049MR1350695
  14. N. J. Hitchin, Poncelet polygons and the Painlevé transcendents, (1996), 151-185, Oxford University Press, Bombay Zbl0893.32018
  15. N. J. Hitchin, A new family of Einstein metrics, manifolds and geometry, (1996), 190-222, Cambridge Univ. Press, Cambridge Zbl0858.53038
  16. M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients I, Physica 2D 2 (1981), 306-352 Zbl1194.34167MR630674
  17. M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients II, Physica 2D 3 (1981), 407-448 Zbl1194.34166MR625446
  18. M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients III, Physica 2D 4 (1981), 26-46 Zbl1194.34169MR636469
  19. M. Jimbo, M., T. Miwa, Solitons and Infinite Dimensional Lie Algebras, Publ. RIMS, Kyoto Univ. 19 (1983), 943-1001 Zbl0557.35091MR723457
  20. V.G. Kac, J.W. van de Leur, The n -component K P hierarchy and representation theory, Integrability, topological solitons and beyond, J. Math. Phys. 44 (2003), 3245-3293 Zbl1062.37071MR2006751
  21. J.W. van de Leur, Twisted G L n Loop Group Orbit and Solutions of WDVV Equations, Internat. Math. Res. Notices 11 (2001), 551-573 Zbl0991.37042MR1836730
  22. J.W. van de Leur, R. Martini, The construction of Frobenius Manifolds from KP tau-Functions, Commun. Math. Phys. 205 (1999), 587-616 Zbl0940.53046MR1711265
  23. I.G. Macdonald, Symmetric functions and Hall polynomials. Second edition., (1995), Oxford University Press, New York Zbl0824.05059MR1354144
  24. G. Mahoux, Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, The Painlevé property, one century later, (1999), 35-76, Springer, New York Zbl1034.34105
  25. M. Mazzocco, Picard and Chazy solutions to the Painlevé VI equation, 321 (2001), 131-169, http://arxiv.org/abs/math.AG/9901054 Zbl0999.34079
  26. T. Shiota, Prym varieties and soliton equations, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) 7 (1989), 407-448, World Sci. Publishing, Teaneck, NJ Zbl0766.14020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.