Calogero-Moser spaces and an adelic W -algebra

Emil Horozov[1]

  • [1] Bulgarian Academy of Science, institute of mathematics and informatics, acad. G. Bonchev Str., Block 8, 1113 Sofia (Bulgarie)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 2069-2090
  • ISSN: 0373-0956


We introduce a Lie algebra, which we call adelic W -algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.

How to cite


Horozov, Emil. "Calogero-Moser spaces and an adelic $W$-algebra." Annales de l’institut Fourier 55.6 (2005): 2069-2090. <>.

abstract = {We introduce a Lie algebra, which we call adelic $W$-algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.},
affiliation = {Bulgarian Academy of Science, institute of mathematics and informatics, acad. G. Bonchev Str., Block 8, 1113 Sofia (Bulgarie)},
author = {Horozov, Emil},
journal = {Annales de l’institut Fourier},
keywords = {Fock spaces; bispectral operators; Sato's theory for KP hierarchy},
language = {eng},
number = {6},
pages = {2069-2090},
publisher = {Association des Annales de l'Institut Fourier},
title = {Calogero-Moser spaces and an adelic $W$-algebra},
url = {},
volume = {55},
year = {2005},

AU - Horozov, Emil
TI - Calogero-Moser spaces and an adelic $W$-algebra
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2069
EP - 2090
AB - We introduce a Lie algebra, which we call adelic $W$-algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.
LA - eng
KW - Fock spaces; bispectral operators; Sato's theory for KP hierarchy
UR -
ER -


  1. M. Adler, J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys. 61 (1978), 1-30 Zbl0428.35067MR501106
  2. H. Airault, H.P. McKean, J. Moser, Rational and elliptic solutions to the Korteweg-de Vries equation and related many-body problem, Comm. Pure Appl. Math. 30 (1977), 95-148 Zbl0338.35024MR649926
  3. M. Adler, T. Shiota, P. van Moerbeke, A Lax representation for the vertex operator and the central extension, Commun. Math. Phys. 171 (1995), 547-588 Zbl0839.35116MR1346172
  4. B.N. Bakalov, L.S. Georgiev, I.T. Todorov, A QFT approach to W 1 + , New Trends in Quantum Field Theory, Proc. of the 1995 Razlog (Bulgaria) Workshop (1996), 147-158, Heron Press, Sofia 
  5. B. Bakalov, E. Horozov, M. Yakimov, Tau-functions as highest weight vectors for W 1 + algebra, J. Phys. A. Math. Gen. 29 (1996), 5565-5573 Zbl0906.17018MR1419041
  6. B. Bakalov, E. Horozov, M. Yakimov, Bäcklund-Darboux transformations in Sato's Grassmannian, Serdica Math. J. 4 (1996) Zbl0934.37016MR1483606
  7. B. Bakalov, E. Horozov, M. Yakimov, Bispectral algebras of commuting ordinary differential operators, Comm. Mat. Phys. 190 (1997), 331-373 Zbl0912.34065MR1489575
  8. B. Bakalov, E. Horozov, M. Yakimov, Highest weight modules over W 1 + , and the bispectral problem, Duke Math. J. 93 (1998), 41-72 Zbl0983.17015MR1620079
  9. Yu. Berest, G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127-147 Zbl0983.16021MR1785579
  10. Yu. Berest, G. Wilson, Ideal classes of the Weyl algebra and noncommutative projective geometry, (2001) Zbl1055.16030
  11. R.C. Cannings, M.P. Holland, Right ideals in rings of differential operators, J. Algebra 167 (1994), 116-141 Zbl0824.16022MR1282820
  12. F. Calogero, Solution of the one-dimensional n -body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436 Zbl1002.70558MR280103
  13. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symp., Nonlinear integrable systems - Classical and Quantum theory, (Kyoto 1981) (1983), 39-111, Singapore: World Scientific Zbl0571.35098
  14. L. Dickey, Soliton equations and integrable systems, Singapore: World Scientific (1991) Zbl0753.35075MR1147643
  15. J.J. Duistermaat, F.A. Grünbaum, Differential equations in the spectral parameter, Commun. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
  16. B. Fuchsteiner, Master-symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theor. Phys. 70 (1983), 1508-1522 Zbl1098.37536MR734645
  17. P.G. Grinevich, A.Yu. Orlov, E.I. Schulman, On the symmetries of the integrable system, Modern development of the Soliton theory (1992) 
  18. P.A. Grünbaum, The limited angle reconstruction problem in computer tomography, 27 (1982), 43-61, AMS Zbl0536.65094
  19. F.A. Grünbaum, L. Haine, E. Horozov, Some functions that generalize the Krall-Laguerre polynomials, J. Comp. Appl. Math. 106 (1999), 271-297 Zbl0926.33007MR1696411
  20. F.A. Grünbaum, M. Yakimov, Discrete bispectral Darboux transformations from Jacobi operators, (2000) Zbl1051.39020
  21. L. Haine, P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Int. Math. Res. Notices 6 (2000), 281-323 Zbl0984.37078MR1749073
  22. E. Horozov, Dual algebras of differential operators, in: Kowalevski property (Montréal), CRM Proc. Lecture Notes, Surveys from Kowalevski Workshop on Mathematical methods of Regular Dynamics, Leeds, April 2000 (2002) Zbl1037.47030MR1916779
  23. E. Horozov, The Weyl algebra, bispectral operators and dynamics of poles in integrable systems, Reg. & Chaotic Dynamics 7 (2002), 399-424 Zbl1034.34100MR1957273
  24. Pl. Iliev, Algèbres commutatives d’opérateurs aux q -differences et systèmes de Calogero-Moser, C. R. Sci. Paris, Série I 329 (1999), 877-882 Zbl0947.39010MR1728001
  25. D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), 481-507 Zbl0368.58008MR478225
  26. I.M Krichever, On Rational solutions of Kadomtsev-Petviashvily equation and integrable systems of N particles on the line, Funct. Anal. Appl. 12 (1978), 76-78 Zbl0408.70010
  27. V.G. Kac, D.H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA 78 (1981), 3308-3312 Zbl0469.22016MR619827
  28. V.G. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys. 9308153 (1993), 429-457 Zbl0826.17027MR1243706
  29. V.G. Kac, A. Raina, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, 2 (1987), Singapore: World Scientific Zbl0668.17012
  30. A. Kasman, Bispectral KP solutions and linearization of Calogero-Moser particle systems, Commun. Math. Phys. 172 (1995), 427-448 Zbl0842.58047MR1350415
  31. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975), 197-220 Zbl0303.34019MR375869
  32. A.Yu. Orlov, Vertex operators, ¯ -problem, symmetries, variational identities and Hamiltonian formalism for 2 + 1 integrable systems, Proc. Kiev Intern. Workshop, Plasma theory and non-linear and turbulent processes in Physics (1988), Singapore: World Scientific Zbl0691.35075
  33. A.Yu. Orlov, E.I. Schulman, Additional symmetries for integrable and conformal algebra representation, Lett. Math. Phys. 12 (1989), 171-179 Zbl0618.35107
  34. M. Rothstein, Explicit formulas for the Airy and Bessel involutions in terms of Calogero-Moser pairs, The Bispectral Problem (1998), CRM Proceedings and Lecture Notes, AMS Zbl0985.37081
  35. M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku 439 (1981), 30-40 Zbl0507.58029
  36. G. Segal, G. Wilson, Loop Groups and equations of KdV type, Publ. Math. IHES 61 (1985), 5-65 Zbl0592.35112MR783348
  37. P. van Moerbeke, Integrable foundations of string theory, (1994), 163-267, Singapore: World Scientific Zbl0850.81049
  38. G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177-204 Zbl0781.34051MR1234841
  39. G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian (with an appendix by I. G. Macdonald), Invent. Math. 133 (1998), 1-41 Zbl0906.35089MR1626461

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.