Deformations and derived categories

Frauke M. Bleher[1]; Ted Chinburg[2]

  • [1] University of Iowa, Department of Mathematics, Iowa City, IA 52242-1419 (USA)
  • [2] University of Pennsylvania, Department of Mathematics, Philadelphia, PA 19104-6395 (USA)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2285-2359
  • ISSN: 0373-0956

Abstract

top
In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology of μ p on certain affine CM ellitpic curves.

How to cite

top

Bleher, Frauke M., and Chinburg, Ted. "Deformations and derived categories." Annales de l'institut Fourier 55.7 (2005): 2285-2359. <http://eudml.org/doc/116255>.

@article{Bleher2005,
abstract = {In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology of $\mu _p$ on certain affine CM ellitpic curves.},
affiliation = {University of Iowa, Department of Mathematics, Iowa City, IA 52242-1419 (USA); University of Pennsylvania, Department of Mathematics, Philadelphia, PA 19104-6395 (USA)},
author = {Bleher, Frauke M., Chinburg, Ted},
journal = {Annales de l'institut Fourier},
keywords = {Versal and universal deformations; derived categories; hypercohomology; CM elliptic curves; versal deformations; universal deformations},
language = {eng},
number = {7},
pages = {2285-2359},
publisher = {Association des Annales de l'Institut Fourier},
title = {Deformations and derived categories},
url = {http://eudml.org/doc/116255},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Bleher, Frauke M.
AU - Chinburg, Ted
TI - Deformations and derived categories
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2285
EP - 2359
AB - In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology of $\mu _p$ on certain affine CM ellitpic curves.
LA - eng
KW - Versal and universal deformations; derived categories; hypercohomology; CM elliptic curves; versal deformations; universal deformations
UR - http://eudml.org/doc/116255
ER -

References

top
  1. J.L. Alperin, Local Representation Theory, 11 (1986), Cambridge University Press, Cambridge Zbl0593.20003MR860771
  2. F.M. Bleher, T. Chinburg, Universal deformation rings and cyclic blocks, Math. Ann. 318 (2000), 805-836 Zbl0971.20004MR1802512
  3. F.M. Bleher, T. Chinburg, Applications of versal deformations to Galois theory, Comment. Math. Helv. 78 (2003), 45-64 Zbl1034.20005MR1966751
  4. F.M. Bleher, T. Chinburg, Deformations and derived categories, C. R. Acad. Sci. Paris Ser. I Math. 334 (2002), 97-100 Zbl1079.11027MR1885087
  5. F.M. Bleher, Universal deformation rings and Klein four defect groups, Trans. Amer. Math. Soc. 354-10 (2002), 3893-3906 Zbl1047.20006MR1926858
  6. N. Boston, S.V. Ullom, Representations related to CM elliptic curves, Math. Proc. Camb. Phil. Soc. 113 (1993), 71-85 Zbl0795.14017MR1188818
  7. C. Breuil, B. Conrad, F. Diamond & R. Taylor, On the modularity of elliptic curves over : Wild 3 -adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939 Zbl0982.11033MR1839918
  8. M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92 Zbl0704.20010MR1051243
  9. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470 Zbl0146.04702MR202790
  10. G. Cornell, J.H. Silverman & G. Stevens (eds.), Modular Forms and Fermat's Last Theorem (Boston, 1995), (1997), Springer-Verlag, Berlin-Heidelberg-New York Zbl1051.11500MR1638473
  11. P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 259-278 Zbl0159.22501MR244265
  12. B. de Smit, H.W. Lenstra Jr., Explicit Constructions of Universal Deformation Rings, Modular Forms and Fermat's Last Theorem' (Boston, 1995) (1997), 313-326, Springer-Verlag, Berlin-Heidelberg-New York Zbl0907.13010MR1638482
  13. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 Zbl0201.35602MR232821
  14. P. Gabriel, Étude infinitesimale des schémas en groupes,, 151 (1970), 476-562, Springer-Verlag, Heidelberg 
  15. P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), John Wiley and Sons, New York Zbl0408.14001MR507725
  16. A. Grothendieck, SGA 4 (with M. Artin and J.-L. Verdier), Théorie des topos et cohomologie étale des schémas, 269, 270, 305 (1972-1973), Springer-Verlag 
  17. R. Hartshorne, Residues and Duality, 20 (1966), Springer-Verlag, Berlin-Heidelberg-New York Zbl0212.26101MR222093
  18. L. Illusie, Complexe cotangent et déformations, I, II, 239, 283 (1971, 1972), Springer-Verlag, Berlin-New York Zbl0238.13017MR491680
  19. B. Mazur, Deforming Galois representations, (1989), 385-437, Springer-Verlag, Berlin-Heidelberg-New York Zbl0714.11076MR1012172
  20. B. Mazur, Deformation theory of Galois representations, (1997), 243-311, Springer-Verlag, Berlin-Heidelberg-New York Zbl0901.11015MR1638481
  21. J.S. Milne, Étale cohomology, (1980), Princeton Univ. Press,, Princeton Zbl0433.14012MR559531
  22. J.S. Milne, Arithmetic Duality Theorems, (1986), Academic Press, Boston Zbl0613.14019MR881804
  23. L. Ribes, P. Zalesskii, Profinite groups, (2000), Springer-Verlag, Berlin-Heidelberg-New York Zbl0949.20017MR1775104
  24. J. Rickard, The abelian defect group conjecture, II (1998), 121-128, Doc. Math., Extra Volume Zbl0919.20007MR1648062
  25. M. Schlessinger, Functors of Artin Rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
  26. G. Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Princeton Univ. Press, Princeton Zbl0221.10029MR314766
  27. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572 Zbl0823.11030MR1333036
  28. A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443-551 Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.