Deformations and derived categories
Frauke M. Bleher[1]; Ted Chinburg[2]
- [1] University of Iowa, Department of Mathematics, Iowa City, IA 52242-1419 (USA)
- [2] University of Pennsylvania, Department of Mathematics, Philadelphia, PA 19104-6395 (USA)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2285-2359
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBleher, Frauke M., and Chinburg, Ted. "Deformations and derived categories." Annales de l'institut Fourier 55.7 (2005): 2285-2359. <http://eudml.org/doc/116255>.
@article{Bleher2005,
abstract = {In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology of $\mu _p$ on certain affine CM ellitpic curves.},
affiliation = {University of Iowa, Department of Mathematics, Iowa City, IA 52242-1419 (USA); University of Pennsylvania, Department of Mathematics, Philadelphia, PA 19104-6395 (USA)},
author = {Bleher, Frauke M., Chinburg, Ted},
journal = {Annales de l'institut Fourier},
keywords = {Versal and universal deformations; derived categories; hypercohomology; CM elliptic curves; versal deformations; universal deformations},
language = {eng},
number = {7},
pages = {2285-2359},
publisher = {Association des Annales de l'Institut Fourier},
title = {Deformations and derived categories},
url = {http://eudml.org/doc/116255},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Bleher, Frauke M.
AU - Chinburg, Ted
TI - Deformations and derived categories
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2285
EP - 2359
AB - In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology of $\mu _p$ on certain affine CM ellitpic curves.
LA - eng
KW - Versal and universal deformations; derived categories; hypercohomology; CM elliptic curves; versal deformations; universal deformations
UR - http://eudml.org/doc/116255
ER -
References
top- J.L. Alperin, Local Representation Theory, 11 (1986), Cambridge University Press, Cambridge Zbl0593.20003MR860771
- F.M. Bleher, T. Chinburg, Universal deformation rings and cyclic blocks, Math. Ann. 318 (2000), 805-836 Zbl0971.20004MR1802512
- F.M. Bleher, T. Chinburg, Applications of versal deformations to Galois theory, Comment. Math. Helv. 78 (2003), 45-64 Zbl1034.20005MR1966751
- F.M. Bleher, T. Chinburg, Deformations and derived categories, C. R. Acad. Sci. Paris Ser. I Math. 334 (2002), 97-100 Zbl1079.11027MR1885087
- F.M. Bleher, Universal deformation rings and Klein four defect groups, Trans. Amer. Math. Soc. 354-10 (2002), 3893-3906 Zbl1047.20006MR1926858
- N. Boston, S.V. Ullom, Representations related to CM elliptic curves, Math. Proc. Camb. Phil. Soc. 113 (1993), 71-85 Zbl0795.14017MR1188818
- C. Breuil, B. Conrad, F. Diamond & R. Taylor, On the modularity of elliptic curves over : Wild -adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939 Zbl0982.11033MR1839918
- M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92 Zbl0704.20010MR1051243
- A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470 Zbl0146.04702MR202790
- G. Cornell, J.H. Silverman & G. Stevens (eds.), Modular Forms and Fermat's Last Theorem (Boston, 1995), (1997), Springer-Verlag, Berlin-Heidelberg-New York Zbl1051.11500MR1638473
- P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 259-278 Zbl0159.22501MR244265
- B. de Smit, H.W. Lenstra Jr., Explicit Constructions of Universal Deformation Rings, Modular Forms and Fermat's Last Theorem' (Boston, 1995) (1997), 313-326, Springer-Verlag, Berlin-Heidelberg-New York Zbl0907.13010MR1638482
- P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 Zbl0201.35602MR232821
- P. Gabriel, Étude infinitesimale des schémas en groupes,, 151 (1970), 476-562, Springer-Verlag, Heidelberg
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), John Wiley and Sons, New York Zbl0408.14001MR507725
- A. Grothendieck, SGA 4 (with M. Artin and J.-L. Verdier), Théorie des topos et cohomologie étale des schémas, 269, 270, 305 (1972-1973), Springer-Verlag
- R. Hartshorne, Residues and Duality, 20 (1966), Springer-Verlag, Berlin-Heidelberg-New York Zbl0212.26101MR222093
- L. Illusie, Complexe cotangent et déformations, I, II, 239, 283 (1971, 1972), Springer-Verlag, Berlin-New York Zbl0238.13017MR491680
- B. Mazur, Deforming Galois representations, (1989), 385-437, Springer-Verlag, Berlin-Heidelberg-New York Zbl0714.11076MR1012172
- B. Mazur, Deformation theory of Galois representations, (1997), 243-311, Springer-Verlag, Berlin-Heidelberg-New York Zbl0901.11015MR1638481
- J.S. Milne, Étale cohomology, (1980), Princeton Univ. Press,, Princeton Zbl0433.14012MR559531
- J.S. Milne, Arithmetic Duality Theorems, (1986), Academic Press, Boston Zbl0613.14019MR881804
- L. Ribes, P. Zalesskii, Profinite groups, (2000), Springer-Verlag, Berlin-Heidelberg-New York Zbl0949.20017MR1775104
- J. Rickard, The abelian defect group conjecture, II (1998), 121-128, Doc. Math., Extra Volume Zbl0919.20007MR1648062
- M. Schlessinger, Functors of Artin Rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Princeton Univ. Press, Princeton Zbl0221.10029MR314766
- R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572 Zbl0823.11030MR1333036
- A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443-551 Zbl0823.11029MR1333035
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.