Obstructions for deformations of complexes
Frauke M. Bleher[1]; Ted Chinburg[2]
- [1] University of Iowa Department of Mathematics Iowa City, IA 52242-1419 (U.S.A.)
- [2] University of Pennsylvania Department of Mathematics Philadelphia, PA 19104-6395 (U.S.A.)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 2, page 613-654
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBleher, Frauke M., and Chinburg, Ted. "Obstructions for deformations of complexes." Annales de l’institut Fourier 63.2 (2013): 613-654. <http://eudml.org/doc/275486>.
@article{Bleher2013,
abstract = {We develop two approaches to obstruction theory for deformations of derived isomorphism classes of complexes of modules for a profinite group $G$ over a complete local Noetherian ring $A$ of positive residue characteristic.},
affiliation = {University of Iowa Department of Mathematics Iowa City, IA 52242-1419 (U.S.A.); University of Pennsylvania Department of Mathematics Philadelphia, PA 19104-6395 (U.S.A.)},
author = {Bleher, Frauke M., Chinburg, Ted},
journal = {Annales de l’institut Fourier},
keywords = {Versal and universal deformations; derived categories; obstructions; spectral sequences; versal and universal deformations},
language = {eng},
number = {2},
pages = {613-654},
publisher = {Association des Annales de l’institut Fourier},
title = {Obstructions for deformations of complexes},
url = {http://eudml.org/doc/275486},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Bleher, Frauke M.
AU - Chinburg, Ted
TI - Obstructions for deformations of complexes
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 613
EP - 654
AB - We develop two approaches to obstruction theory for deformations of derived isomorphism classes of complexes of modules for a profinite group $G$ over a complete local Noetherian ring $A$ of positive residue characteristic.
LA - eng
KW - Versal and universal deformations; derived categories; obstructions; spectral sequences; versal and universal deformations
UR - http://eudml.org/doc/275486
ER -
References
top- Frauke M. Bleher, Ted Chinburg, Deformations and derived categories, Ann. Institut Fourier (Grenoble) 55 (2005), 2285-2359 Zbl1138.11020MR2207385
- Frauke M. Bleher, Ted Chinburg, Finiteness Theorems for Deformations of Complexes., Ann. Institut Fourier (Grenoble) 63 (2013), 573-612 Zbl06193041
- Armand Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470 Zbl0146.04702MR202790
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 Zbl0201.35602MR232821
- Pierre Gabriel, Étude infinitésimale des schémas en groupes, A. Grothendieck, SGA 3 (with M. Demazure), Schémas en groupes I, II, III (1970), 476-562, Springer-Verlag, Heidelberg Zbl0209.24201
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, II, Inst. Hautes Études Sci. Publ. Math. (1961 and 1963) Zbl0122.16102MR217085
- Luc Illusie, Complexe cotangent et déformations. I, II, (1971 and 1972), Springer-Verlag, Berlin Zbl0224.13014MR491680
- B. Mazur, Deforming Galois representations, Galois groups over (Berkeley, CA, 1987) 16 (1989), 385-437, Springer Verlag, Berlin-Heidelberg-New York Zbl0714.11076MR1012172
- B. Mazur, Deformation theory of Galois representations, Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995) (1997), 243-311, Springer Verlag, Berlin-Heidelberg-New York Zbl0901.11015MR1638481
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
- J.-L. Verdier, Catégories derivées, P. Deligne, SGA 4.5, Cohomologie étale (1970), 262-311, Springer Verlag, Heidelberg
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.