Finiteness Theorems for Deformations of Complexes

Frauke M. Bleher[1]; Ted Chinburg[2]

  • [1] University of Iowa Department of Mathematics Iowa City, IA 52242-1419 (U.S.A.)
  • [2] University of Pennsylvania Department of Mathematics Philadelphia, PA 19104-6395 (U.S.A.)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 573-612
  • ISSN: 0373-0956

Abstract

top
We consider deformations of bounded complexes of modules for a profinite group G over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of G -modules that is strictly perfect over the associated versal deformation ring.

How to cite

top

Bleher, Frauke M., and Chinburg, Ted. "Finiteness Theorems for Deformations of Complexes." Annales de l’institut Fourier 63.2 (2013): 573-612. <http://eudml.org/doc/275614>.

@article{Bleher2013,
abstract = {We consider deformations of bounded complexes of modules for a profinite group $G$ over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of $G$-modules that is strictly perfect over the associated versal deformation ring.},
affiliation = {University of Iowa Department of Mathematics Iowa City, IA 52242-1419 (U.S.A.); University of Pennsylvania Department of Mathematics Philadelphia, PA 19104-6395 (U.S.A.)},
author = {Bleher, Frauke M., Chinburg, Ted},
journal = {Annales de l’institut Fourier},
keywords = {Versal and universal deformations; derived categories; finiteness questions; tame fundamental groups; versal and universal deformations},
language = {eng},
number = {2},
pages = {573-612},
publisher = {Association des Annales de l’institut Fourier},
title = {Finiteness Theorems for Deformations of Complexes},
url = {http://eudml.org/doc/275614},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Bleher, Frauke M.
AU - Chinburg, Ted
TI - Finiteness Theorems for Deformations of Complexes
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 573
EP - 612
AB - We consider deformations of bounded complexes of modules for a profinite group $G$ over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of $G$-modules that is strictly perfect over the associated versal deformation ring.
LA - eng
KW - Versal and universal deformations; derived categories; finiteness questions; tame fundamental groups; versal and universal deformations
UR - http://eudml.org/doc/275614
ER -

References

top
  1. Frauke M. Bleher, Ted Chinburg, Deformations and derived categories, C. R. Math. Acad. Sci. Paris 334 (2002), 97-100 Zbl1079.11027MR1885087
  2. Frauke M. Bleher, Ted Chinburg, Deformations and derived categories, Ann. Inst. Fourier (Grenoble) 55 (2005), 2285-2359 Zbl1138.11020MR2207385
  3. Frauke M. Bleher, Ted Chinburg, Obstructions for deformations of complexes, Ann. Inst. Fourier (Grenoble) 63 (2013), 613-654 Zbl06193042
  4. Armand Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470 Zbl0146.04702MR202790
  5. Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-348 Zbl0201.35602MR232821
  6. Pierre Gabriel, Étude infinitesimale des schémas en groupes, A. Grothendieck, SGA 3 (with M. Demazure), Schémas en groupes I, II, III (1970), 476-562, Springer-Verlag, Heidelberg Zbl0209.24201
  7. Alexander Grothendieck, Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, (1971), Springer-Verlag, Berlin Zbl0216.33001MR316453
  8. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  9. Mark Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), 1085-1180 Zbl1201.14034MR2600871
  10. Michel Lazard, Groupes analytiques p -adiques, Inst. Hautes Études Sci. Publ. Math. (1965), 389-603 Zbl0139.02302MR209286
  11. B. Mazur, Deforming Galois representations, Galois groups over (Berkeley, CA, 1987) 16 (1989), 385-437, Springer, New York Zbl0714.11076MR1012172
  12. Barry Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 243-311, Springer, New York Zbl0901.11015MR1638481
  13. Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
  14. Alexander Schmidt, Tame coverings of arithmetic schemes, Math. Ann. 322 (2002), 1-18 Zbl1113.14022MR1883386
  15. Bart de Smit, Hendrik W. Lenstra, Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 313-326, Springer, New York Zbl0907.13010MR1638482
  16. J.-L. Verdier, Catégories derivées, P. Deligne, SGA 4.5, Cohomologie étale (1970), 262-311, Springer-Verlag, Heidelberg 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.