Stability of the bases and frames reproducing kernels in model spaces
- [1] Université Bordeaux 1, Laboratoire d'Analyse et Géométrie, 351 cours de la Libération, 33405 Talence (France), Institutionen för Matematik, Kgl Tekniska Högskolan, 100 44 Stockholm (Suède)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2399-2422
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaranov, Anton. "Stability of the bases and frames reproducing kernels in model spaces." Annales de l'institut Fourier 55.7 (2005): 2399-2422. <http://eudml.org/doc/116258>.
@article{Baranov2005,
abstract = {We study the bases and frames of reproducing kernels in the model subspaces
$K^2_\{\Theta \}=H^2\ominus \Theta H^2$ of the Hardy class $H2$ in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels
$k_\{\lambda _n\}(z)= (1-\overline\{\Theta (\lambda _n)\}\Theta (z))/(z-\overline\{\lambda \}_n)$ under “small” perturbations of the points $\lambda _n$. We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces
$\{K^2_\{\Theta \}\}$ and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.},
affiliation = {Université Bordeaux 1, Laboratoire d'Analyse et Géométrie, 351 cours de la Libération, 33405 Talence (France), Institutionen för Matematik, Kgl Tekniska Högskolan, 100 44 Stockholm (Suède)},
author = {Baranov, Anton},
journal = {Annales de l'institut Fourier},
keywords = {Inner function; shift-coinvariant subspace; reproducing kernel; Riesz basis; frame; stability; inner function},
language = {eng},
number = {7},
pages = {2399-2422},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stability of the bases and frames reproducing kernels in model spaces},
url = {http://eudml.org/doc/116258},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Baranov, Anton
TI - Stability of the bases and frames reproducing kernels in model spaces
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2399
EP - 2422
AB - We study the bases and frames of reproducing kernels in the model subspaces
$K^2_{\Theta }=H^2\ominus \Theta H^2$ of the Hardy class $H2$ in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels
$k_{\lambda _n}(z)= (1-\overline{\Theta (\lambda _n)}\Theta (z))/(z-\overline{\lambda }_n)$ under “small” perturbations of the points $\lambda _n$. We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces
${K^2_{\Theta }}$ and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
LA - eng
KW - Inner function; shift-coinvariant subspace; reproducing kernel; Riesz basis; frame; stability; inner function
UR - http://eudml.org/doc/116258
ER -
References
top- P. R. Ahern, D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342 Zbl0197.39202MR262511
- A. B. Aleksandrov, Invariant subspaces of shift operators. An axiomatic approach, J. Soviet Math. 22 (1983), 1695-1708 Zbl0517.47019
- A. B. Aleksandrov, A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, J. Math. Sci. 5 (1997), 1773-1778 Zbl0907.47001MR1327512
- A. B. Aleksandrov, Embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci. 110 (2002), 2907-2929 Zbl1060.30043MR1734326
- A. D. Baranov, The Bernstein inequality in the de Branges spaces and embedding theorems, Amer. Math. Soc., Ser. 2 209 (2003), 21-49 Zbl1044.30012MR2018371
- A. D. Baranov, Weighted Bernstein-type inequalities and embedding theorems for shift-coinvariant subspaces, Algebra i Analiz 15 (2003), 138-168 Zbl1070.47021MR2068792
- A. D. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal. 223 (2005), 116-146 Zbl1082.46019MR2139883
- I. Boricheva, Geometric properties of projections of reproducing kernels on -invariant subspaces of , J. Funct. Anal. 161 (1999), 397-417 Zbl0939.30005MR1674647
- P. Borwein, T. Erdelyi, Sharp extensions of Bernstein's inequality to rational spaces, Mathematika 43 (1996), 413-423 Zbl0869.41010MR1433285
- L. De Branges, Hilbert spaces of entire functions, (1968), Prentice Hall, Englewood Cliffs (NJ) Zbl0157.43301MR229011
- D. N. Clark, One-dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191 Zbl0252.47010MR301534
- W. S. Cohn, Radial limits and star invariant subspaces of bounded mean oscillation, Amer. J. Math. 108 (1986), 719-749 Zbl0607.30034MR844637
- W. S. Cohn, Carleson measures and operators on star-invariant subspaces, J. Oper. Theory 15 (1986), 181-202 Zbl0615.47025MR816238
- W. S. Cohn, On fractional derivatives and star invariant subspaces, Michigan Math. J. 34 (1987), 391-406 Zbl0629.30037MR911813
- K. M. Dyakonov, Entire functions of exponential type and model subspaces in , J. Math. Sci. 71 (1994), 2222-2233 Zbl0827.30020MR1111913
- K. M. Dyakonov, Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J. 43 (1994), 805-838 Zbl0821.30026MR1305948
- K. M. Dyakonov, Differentiation in star-invariant subspaces I, II, J. Funct. Anal. 192 (2002), 364-409 Zbl1011.47005MR1923406
- E. Fricain, Bases of reproducing kernels in model spaces, J. Oper. Theory 46 (2001), 517-543 Zbl0995.46021MR1897152
- E. Fricain, Complétude des noyaux reproduisants dans les espaces modèles, Ann. Inst. Fourier (Grenoble) 52 (2002), 661-686 Zbl1032.46040MR1906486
- S. V. Hruscev, N. K. Nikolskii, B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math. 864 (1981), 214-335 Zbl0466.46018MR643384
- M. I. Kadec, The exact value of the Paley-Wiener constant, Sov. Math. Dokl. 5 (1964), 559-561 Zbl0196.42602MR162088
- M. B. Levin, An estimate of the derivative of a meromorphic function on the boundary of domain, Sov. Math. Dokl. 15 (1974), 831-834 Zbl0299.30028MR352468
- Yu. I. Lyubarskii, K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s () condition, Rev. Mat. Iberoamericana 13 (1997), 361-376 Zbl0918.42003MR1617649
- N. K. Nikolski, Treatise on the shift operator, (1986), Springer-Verlag, Berlin-Heidelberg Zbl0587.47036MR827223
- N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz 92 (2002), AMS, Providence, RI Zbl1007.47001MR1864396
- N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems 93 (2002), AMS, Providence, RI Zbl1007.47002MR1892647
- J. Ortega-Cerda, K. Seip, Fourier frames, Ann. of Math. 155 (2002), 789-806 Zbl1015.42023MR1923965
- K. Seip, On the connection between exponential bases and certain related sequences in , J. Funct. Anal. 130 (1995), 131-160 Zbl0872.46006MR1331980
- A. L. Volberg, S. R. Treil, Embedding theorems for invariant subspaces of the inverse shift operator, J. Soviet Math. 42 (1988), 1562-1572 Zbl0654.30027MR849293
- R. M. Young, An Introduction to Nonharmonic Fourier Series, (1980), Academic Press, New-York Zbl0493.42001MR591684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.