Stability of the bases and frames reproducing kernels in model spaces

Anton Baranov[1]

  • [1] Université Bordeaux 1, Laboratoire d'Analyse et Géométrie, 351 cours de la Libération, 33405 Talence (France), Institutionen för Matematik, Kgl Tekniska Högskolan, 100 44 Stockholm (Suède)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2399-2422
  • ISSN: 0373-0956

Abstract

top
We study the bases and frames of reproducing kernels in the model subspaces K Θ 2 = H 2 Θ H 2 of the Hardy class H 2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels k λ n ( z ) = ( 1 - Θ ( λ n ) ¯ Θ ( z ) ) / ( z - λ ¯ n ) under “small” perturbations of the points λ n . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces K Θ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.

How to cite

top

Baranov, Anton. "Stability of the bases and frames reproducing kernels in model spaces." Annales de l'institut Fourier 55.7 (2005): 2399-2422. <http://eudml.org/doc/116258>.

@article{Baranov2005,
abstract = {We study the bases and frames of reproducing kernels in the model subspaces $K^2_\{\Theta \}=H^2\ominus \Theta H^2$ of the Hardy class $H2$ in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels $k_\{\lambda _n\}(z)= (1-\overline\{\Theta (\lambda _n)\}\Theta (z))/(z-\overline\{\lambda \}_n)$ under “small” perturbations of the points $\lambda _n$. We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces $\{K^2_\{\Theta \}\}$ and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.},
affiliation = {Université Bordeaux 1, Laboratoire d'Analyse et Géométrie, 351 cours de la Libération, 33405 Talence (France), Institutionen för Matematik, Kgl Tekniska Högskolan, 100 44 Stockholm (Suède)},
author = {Baranov, Anton},
journal = {Annales de l'institut Fourier},
keywords = {Inner function; shift-coinvariant subspace; reproducing kernel; Riesz basis; frame; stability; inner function},
language = {eng},
number = {7},
pages = {2399-2422},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stability of the bases and frames reproducing kernels in model spaces},
url = {http://eudml.org/doc/116258},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Baranov, Anton
TI - Stability of the bases and frames reproducing kernels in model spaces
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2399
EP - 2422
AB - We study the bases and frames of reproducing kernels in the model subspaces $K^2_{\Theta }=H^2\ominus \Theta H^2$ of the Hardy class $H2$ in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels $k_{\lambda _n}(z)= (1-\overline{\Theta (\lambda _n)}\Theta (z))/(z-\overline{\lambda }_n)$ under “small” perturbations of the points $\lambda _n$. We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces ${K^2_{\Theta }}$ and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
LA - eng
KW - Inner function; shift-coinvariant subspace; reproducing kernel; Riesz basis; frame; stability; inner function
UR - http://eudml.org/doc/116258
ER -

References

top
  1. P. R. Ahern, D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342 Zbl0197.39202MR262511
  2. A. B. Aleksandrov, Invariant subspaces of shift operators. An axiomatic approach, J. Soviet Math. 22 (1983), 1695-1708 Zbl0517.47019
  3. A. B. Aleksandrov, A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, J. Math. Sci. 5 (1997), 1773-1778 Zbl0907.47001MR1327512
  4. A. B. Aleksandrov, Embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci. 110 (2002), 2907-2929 Zbl1060.30043MR1734326
  5. A. D. Baranov, The Bernstein inequality in the de Branges spaces and embedding theorems, Amer. Math. Soc., Ser. 2 209 (2003), 21-49 Zbl1044.30012MR2018371
  6. A. D. Baranov, Weighted Bernstein-type inequalities and embedding theorems for shift-coinvariant subspaces, Algebra i Analiz 15 (2003), 138-168 Zbl1070.47021MR2068792
  7. A. D. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal. 223 (2005), 116-146 Zbl1082.46019MR2139883
  8. I. Boricheva, Geometric properties of projections of reproducing kernels on z * -invariant subspaces of H 2 , J. Funct. Anal. 161 (1999), 397-417 Zbl0939.30005MR1674647
  9. P. Borwein, T. Erdelyi, Sharp extensions of Bernstein's inequality to rational spaces, Mathematika 43 (1996), 413-423 Zbl0869.41010MR1433285
  10. L. De Branges, Hilbert spaces of entire functions, (1968), Prentice Hall, Englewood Cliffs (NJ) Zbl0157.43301MR229011
  11. D. N. Clark, One-dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191 Zbl0252.47010MR301534
  12. W. S. Cohn, Radial limits and star invariant subspaces of bounded mean oscillation, Amer. J. Math. 108 (1986), 719-749 Zbl0607.30034MR844637
  13. W. S. Cohn, Carleson measures and operators on star-invariant subspaces, J. Oper. Theory 15 (1986), 181-202 Zbl0615.47025MR816238
  14. W. S. Cohn, On fractional derivatives and star invariant subspaces, Michigan Math. J. 34 (1987), 391-406 Zbl0629.30037MR911813
  15. K. M. Dyakonov, Entire functions of exponential type and model subspaces in H p , J. Math. Sci. 71 (1994), 2222-2233 Zbl0827.30020MR1111913
  16. K. M. Dyakonov, Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J. 43 (1994), 805-838 Zbl0821.30026MR1305948
  17. K. M. Dyakonov, Differentiation in star-invariant subspaces I, II, J. Funct. Anal. 192 (2002), 364-409 Zbl1011.47005MR1923406
  18. E. Fricain, Bases of reproducing kernels in model spaces, J. Oper. Theory 46 (2001), 517-543 Zbl0995.46021MR1897152
  19. E. Fricain, Complétude des noyaux reproduisants dans les espaces modèles, Ann. Inst. Fourier (Grenoble) 52 (2002), 661-686 Zbl1032.46040MR1906486
  20. S. V. Hruscev, N. K. Nikolskii, B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math. 864 (1981), 214-335 Zbl0466.46018MR643384
  21. M. I. Kadec, The exact value of the Paley-Wiener constant, Sov. Math. Dokl. 5 (1964), 559-561 Zbl0196.42602MR162088
  22. M. B. Levin, An estimate of the derivative of a meromorphic function on the boundary of domain, Sov. Math. Dokl. 15 (1974), 831-834 Zbl0299.30028MR352468
  23. Yu. I. Lyubarskii, K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s ( A p ) condition, Rev. Mat. Iberoamericana 13 (1997), 361-376 Zbl0918.42003MR1617649
  24. N. K. Nikolski, Treatise on the shift operator, (1986), Springer-Verlag, Berlin-Heidelberg Zbl0587.47036MR827223
  25. N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz 92 (2002), AMS, Providence, RI Zbl1007.47001MR1864396
  26. N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems 93 (2002), AMS, Providence, RI Zbl1007.47002MR1892647
  27. J. Ortega-Cerda, K. Seip, Fourier frames, Ann. of Math. 155 (2002), 789-806 Zbl1015.42023MR1923965
  28. K. Seip, On the connection between exponential bases and certain related sequences in L 2 ( - π , π ) , J. Funct. Anal. 130 (1995), 131-160 Zbl0872.46006MR1331980
  29. A. L. Volberg, S. R. Treil, Embedding theorems for invariant subspaces of the inverse shift operator, J. Soviet Math. 42 (1988), 1562-1572 Zbl0654.30027MR849293
  30. R. M. Young, An Introduction to Nonharmonic Fourier Series, (1980), Academic Press, New-York Zbl0493.42001MR591684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.