Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
An De Rijdt[1]; Nikolas Vander Vennet[2]
- [1] Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium)
- [2] Celestijnenlaan 200 B 3001 Heverlee (Belgium)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 169-216
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Teodor Banica, Théorie des représentations du groupe quantique compact libre , C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 241-244 Zbl0862.17010MR1378260
- Teodor Banica, Le groupe quantique compact libre U, Comm. Math. Phys. 190 (1997), 143-172 Zbl0906.17009MR1484551
- Teodor Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167-198 Zbl0957.46038MR1679171
- Teodor Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
- Teodor Banica, Subfactors associated to compact Kac algebras, Integral Equations Operator Theory 39 (2001), 1-14 Zbl0973.46050MR1806841
- Teodor Banica, Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), 221-232 Zbl1034.46062MR1889999
- Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728 Zbl1122.46046MR2202309
- Florin P. Boca, Ergodic actions of compact matrix pseudogroups on -algebras, Astérisque (1995), 93-109 Zbl0842.46039MR1372527
- A. De Rijdt, N. Vander Vennet, Actions of monoidally equivalent compact quantum groups, (2006) Zbl1331.46063
- Edward G. Effros, Zhong-Jin Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math. 5 (1994), 681-723 Zbl0824.17020MR1297413
- Edward G. Effros, Zhong-Jin Ruan, Operator spaces, 23 (2000), The Clarendon Press Oxford University Press, New York Zbl0969.46002MR1793753
- R. Høegh-Krohn, M. B. Landstad, E. Størmer, Compact ergodic groups of automorphisms, Ann. of Math. (2) 114 (1981), 75-86 Zbl0472.46046MR625345
- Masaki Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), 1-57 Zbl1037.46056MR1916370
- Masaki Izumi, Sergey Neshveyev, Lars Tuset, Poisson boundary of the dual of , Comm. Math. Phys. 262 (2006), 505-531 Zbl1104.58001MR2200270
- Vadim A. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, Ergodic theory of actions (Warwick, 1993–1994) 228 (1996), 127-176, Cambridge Univ. Press, Cambridge Zbl0848.60073MR1411218
- C. Lance, Hilbert C-modules, a toolkit for operator algebraists, (1996) Zbl0822.46080
- Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Astérisque (1995), 111-114 Zbl0842.46044MR1372528
- Ann Maes, Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), 73-112 Zbl0962.46054MR1645264
- Sergey Neshveyev, Lars Tuset, The Martin boundary of a discrete quantum group, J. Reine Angew. Math. 568 (2004), 23-70 Zbl1130.46041MR2034922
- Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on -algebras, Comm. Math. Phys. 277 (2008), 385-421 Zbl1160.46045MR2358289
- Piotr Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20 Zbl0853.46074MR1331688
- Piotr M. Sołtan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), 1245-1270 (electronic) Zbl1099.46048MR2210362
- Reiji Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), 949-964 Zbl1129.46061MR2276175
- Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), 271-296 Zbl1130.46042MR2335776
- Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), 1-83 Zbl1137.46041MR2375065
- Stefaan Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480 Zbl1011.46058MR1814995
- Stefaan Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147-184 Zbl1073.46047MR2113893
- Stefaan Vaes, Nikolas Vander Vennet, Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups, J. Inst. Math. Jussieu 7 (2008), 391-412 Zbl1139.46044MR2400727
- Stefaan Vaes, Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), 35-84 Zbl1129.46062MR2355067
- A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), 431-444 Zbl0864.17012MR1378538
- Alfons Van Daele, Shuzhou Wang, Universal quantum groups, Internat. J. Math. 7 (1996), 255-263 Zbl0870.17011MR1382726
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), 1482-1527 Zbl0665.46053MR990110
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for , Invent. Math. 93 (1988), 309-354 Zbl0692.46058MR948104
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), 273-319 Zbl0734.46041MR1014926
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
- S. L. Woronowicz, Twisted group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181 Zbl0676.46050MR890482
- S. L. Woronowicz, Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845-884, North-Holland, Amsterdam Zbl0997.46045MR1616348