Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
An De Rijdt[1]; Nikolas Vander Vennet[2]
- [1] Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium)
- [2] Celestijnenlaan 200 B 3001 Heverlee (Belgium)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 169-216
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDe Rijdt, An, and Vander Vennet, Nikolas. "Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries." Annales de l’institut Fourier 60.1 (2010): 169-216. <http://eudml.org/doc/116265>.
@article{DeRijdt2010,
abstract = {The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital $C^*$-algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.},
affiliation = {Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium); Celestijnenlaan 200 B 3001 Heverlee (Belgium)},
author = {De Rijdt, An, Vander Vennet, Nikolas},
journal = {Annales de l’institut Fourier},
keywords = {Quantum groups; operator algebras; probability theory; quantum groups},
language = {eng},
number = {1},
pages = {169-216},
publisher = {Association des Annales de l’institut Fourier},
title = {Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries},
url = {http://eudml.org/doc/116265},
volume = {60},
year = {2010},
}
TY - JOUR
AU - De Rijdt, An
AU - Vander Vennet, Nikolas
TI - Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 169
EP - 216
AB - The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital $C^*$-algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.
LA - eng
KW - Quantum groups; operator algebras; probability theory; quantum groups
UR - http://eudml.org/doc/116265
ER -
References
top- Teodor Banica, Théorie des représentations du groupe quantique compact libre , C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 241-244 Zbl0862.17010MR1378260
- Teodor Banica, Le groupe quantique compact libre U, Comm. Math. Phys. 190 (1997), 143-172 Zbl0906.17009MR1484551
- Teodor Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167-198 Zbl0957.46038MR1679171
- Teodor Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
- Teodor Banica, Subfactors associated to compact Kac algebras, Integral Equations Operator Theory 39 (2001), 1-14 Zbl0973.46050MR1806841
- Teodor Banica, Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), 221-232 Zbl1034.46062MR1889999
- Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728 Zbl1122.46046MR2202309
- Florin P. Boca, Ergodic actions of compact matrix pseudogroups on -algebras, Astérisque (1995), 93-109 Zbl0842.46039MR1372527
- A. De Rijdt, N. Vander Vennet, Actions of monoidally equivalent compact quantum groups, (2006) Zbl1331.46063
- Edward G. Effros, Zhong-Jin Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math. 5 (1994), 681-723 Zbl0824.17020MR1297413
- Edward G. Effros, Zhong-Jin Ruan, Operator spaces, 23 (2000), The Clarendon Press Oxford University Press, New York Zbl0969.46002MR1793753
- R. Høegh-Krohn, M. B. Landstad, E. Størmer, Compact ergodic groups of automorphisms, Ann. of Math. (2) 114 (1981), 75-86 Zbl0472.46046MR625345
- Masaki Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), 1-57 Zbl1037.46056MR1916370
- Masaki Izumi, Sergey Neshveyev, Lars Tuset, Poisson boundary of the dual of , Comm. Math. Phys. 262 (2006), 505-531 Zbl1104.58001MR2200270
- Vadim A. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, Ergodic theory of actions (Warwick, 1993–1994) 228 (1996), 127-176, Cambridge Univ. Press, Cambridge Zbl0848.60073MR1411218
- C. Lance, Hilbert C-modules, a toolkit for operator algebraists, (1996) Zbl0822.46080
- Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Astérisque (1995), 111-114 Zbl0842.46044MR1372528
- Ann Maes, Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), 73-112 Zbl0962.46054MR1645264
- Sergey Neshveyev, Lars Tuset, The Martin boundary of a discrete quantum group, J. Reine Angew. Math. 568 (2004), 23-70 Zbl1130.46041MR2034922
- Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on -algebras, Comm. Math. Phys. 277 (2008), 385-421 Zbl1160.46045MR2358289
- Piotr Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20 Zbl0853.46074MR1331688
- Piotr M. Sołtan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), 1245-1270 (electronic) Zbl1099.46048MR2210362
- Reiji Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), 949-964 Zbl1129.46061MR2276175
- Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), 271-296 Zbl1130.46042MR2335776
- Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), 1-83 Zbl1137.46041MR2375065
- Stefaan Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480 Zbl1011.46058MR1814995
- Stefaan Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147-184 Zbl1073.46047MR2113893
- Stefaan Vaes, Nikolas Vander Vennet, Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups, J. Inst. Math. Jussieu 7 (2008), 391-412 Zbl1139.46044MR2400727
- Stefaan Vaes, Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), 35-84 Zbl1129.46062MR2355067
- A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), 431-444 Zbl0864.17012MR1378538
- Alfons Van Daele, Shuzhou Wang, Universal quantum groups, Internat. J. Math. 7 (1996), 255-263 Zbl0870.17011MR1382726
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), 1482-1527 Zbl0665.46053MR990110
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for , Invent. Math. 93 (1988), 309-354 Zbl0692.46058MR948104
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), 273-319 Zbl0734.46041MR1014926
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
- S. L. Woronowicz, Twisted group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181 Zbl0676.46050MR890482
- S. L. Woronowicz, Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845-884, North-Holland, Amsterdam Zbl0997.46045MR1616348
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.