Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries

An De Rijdt[1]; Nikolas Vander Vennet[2]

  • [1] Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium)
  • [2] Celestijnenlaan 200 B 3001 Heverlee (Belgium)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 1, page 169-216
  • ISSN: 0373-0956

Abstract

top
The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital C * -algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.

How to cite

top

De Rijdt, An, and Vander Vennet, Nikolas. "Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries." Annales de l’institut Fourier 60.1 (2010): 169-216. <http://eudml.org/doc/116265>.

@article{DeRijdt2010,
abstract = {The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital $C^*$-algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.},
affiliation = {Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium); Celestijnenlaan 200 B 3001 Heverlee (Belgium)},
author = {De Rijdt, An, Vander Vennet, Nikolas},
journal = {Annales de l’institut Fourier},
keywords = {Quantum groups; operator algebras; probability theory; quantum groups},
language = {eng},
number = {1},
pages = {169-216},
publisher = {Association des Annales de l’institut Fourier},
title = {Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries},
url = {http://eudml.org/doc/116265},
volume = {60},
year = {2010},
}

TY - JOUR
AU - De Rijdt, An
AU - Vander Vennet, Nikolas
TI - Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 169
EP - 216
AB - The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital $C^*$-algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.
LA - eng
KW - Quantum groups; operator algebras; probability theory; quantum groups
UR - http://eudml.org/doc/116265
ER -

References

top
  1. Teodor Banica, Théorie des représentations du groupe quantique compact libre O ( n ) , C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 241-244 Zbl0862.17010MR1378260
  2. Teodor Banica, Le groupe quantique compact libre U ( n ) , Comm. Math. Phys. 190 (1997), 143-172 Zbl0906.17009MR1484551
  3. Teodor Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167-198 Zbl0957.46038MR1679171
  4. Teodor Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
  5. Teodor Banica, Subfactors associated to compact Kac algebras, Integral Equations Operator Theory 39 (2001), 1-14 Zbl0973.46050MR1806841
  6. Teodor Banica, Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), 221-232 Zbl1034.46062MR1889999
  7. Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728 Zbl1122.46046MR2202309
  8. Florin P. Boca, Ergodic actions of compact matrix pseudogroups on C * -algebras, Astérisque (1995), 93-109 Zbl0842.46039MR1372527
  9. A. De Rijdt, N. Vander Vennet, Actions of monoidally equivalent compact quantum groups, (2006) Zbl1331.46063
  10. Edward G. Effros, Zhong-Jin Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math. 5 (1994), 681-723 Zbl0824.17020MR1297413
  11. Edward G. Effros, Zhong-Jin Ruan, Operator spaces, 23 (2000), The Clarendon Press Oxford University Press, New York Zbl0969.46002MR1793753
  12. R. Høegh-Krohn, M. B. Landstad, E. Størmer, Compact ergodic groups of automorphisms, Ann. of Math. (2) 114 (1981), 75-86 Zbl0472.46046MR625345
  13. Masaki Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), 1-57 Zbl1037.46056MR1916370
  14. Masaki Izumi, Sergey Neshveyev, Lars Tuset, Poisson boundary of the dual of SU q ( n ) , Comm. Math. Phys. 262 (2006), 505-531 Zbl1104.58001MR2200270
  15. Vadim A. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, Ergodic theory of actions (Warwick, 1993–1994) 228 (1996), 127-176, Cambridge Univ. Press, Cambridge Zbl0848.60073MR1411218
  16. C. Lance, Hilbert C * -modules, a toolkit for operator algebraists, (1996) Zbl0822.46080
  17. Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Astérisque (1995), 111-114 Zbl0842.46044MR1372528
  18. Ann Maes, Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), 73-112 Zbl0962.46054MR1645264
  19. Sergey Neshveyev, Lars Tuset, The Martin boundary of a discrete quantum group, J. Reine Angew. Math. 568 (2004), 23-70 Zbl1130.46041MR2034922
  20. Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on C * -algebras, Comm. Math. Phys. 277 (2008), 385-421 Zbl1160.46045MR2358289
  21. Piotr Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20 Zbl0853.46074MR1331688
  22. Piotr M. Sołtan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), 1245-1270 (electronic) Zbl1099.46048MR2210362
  23. Reiji Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), 949-964 Zbl1129.46061MR2276175
  24. Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), 271-296 Zbl1130.46042MR2335776
  25. Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), 1-83 Zbl1137.46041MR2375065
  26. Stefaan Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480 Zbl1011.46058MR1814995
  27. Stefaan Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147-184 Zbl1073.46047MR2113893
  28. Stefaan Vaes, Nikolas Vander Vennet, Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups, J. Inst. Math. Jussieu 7 (2008), 391-412 Zbl1139.46044MR2400727
  29. Stefaan Vaes, Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), 35-84 Zbl1129.46062MR2355067
  30. A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), 431-444 Zbl0864.17012MR1378538
  31. Alfons Van Daele, Shuzhou Wang, Universal quantum groups, Internat. J. Math. 7 (1996), 255-263 Zbl0870.17011MR1382726
  32. Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
  33. Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), 1482-1527 Zbl0665.46053MR990110
  34. Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for SU ( 2 ) , Invent. Math. 93 (1988), 309-354 Zbl0692.46058MR948104
  35. Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), 273-319 Zbl0734.46041MR1014926
  36. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
  37. S. L. Woronowicz, Twisted SU ( 2 ) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181 Zbl0676.46050MR890482
  38. S. L. Woronowicz, Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU ( N ) groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
  39. S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845-884, North-Holland, Amsterdam Zbl0997.46045MR1616348

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.