Coalgebraic Approach to the Loday Infinity Category, Stem Differential for -ary Graded and Homotopy Algebras
Mourad Ammar[1]; Norbert Poncin[1]
- [1] University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 355-387
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAmmar, Mourad, and Poncin, Norbert. "Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras." Annales de l’institut Fourier 60.1 (2010): 355-387. <http://eudml.org/doc/116272>.
@article{Ammar2010,
abstract = {We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space $V$. The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on $V$ (resp. graded Loday structures on $V$, sequences that we call Loday infinity structures on $V$). We prove a minimal model theorem for Loday infinity algebras and observe that the $\text\{Lod\}_\{\!\infty \}$ category contains the $\text\{L\}_\{\!\infty \}$ category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and $2n$-ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of $2n$-ary graded Lie algebras.},
affiliation = {University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg); University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg)},
author = {Ammar, Mourad, Poncin, Norbert},
journal = {Annales de l’institut Fourier},
keywords = {Zinbiel coalgebra; graded Loday; Lie; Poisson; Jacobi structure; strongly homotopy algebra; square-zero element method; graded cohomology; Schouten-Nijenhuis; Nijenhuis-Richardson; Grabowski-Marmo bracket; deformation theory; coalgebras; graded Loday structures; cohomologies; stem},
language = {eng},
number = {1},
pages = {355-387},
publisher = {Association des Annales de l’institut Fourier},
title = {Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras},
url = {http://eudml.org/doc/116272},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Ammar, Mourad
AU - Poncin, Norbert
TI - Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 355
EP - 387
AB - We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space $V$. The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on $V$ (resp. graded Loday structures on $V$, sequences that we call Loday infinity structures on $V$). We prove a minimal model theorem for Loday infinity algebras and observe that the $\text{Lod}_{\!\infty }$ category contains the $\text{L}_{\!\infty }$ category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and $2n$-ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of $2n$-ary graded Lie algebras.
LA - eng
KW - Zinbiel coalgebra; graded Loday; Lie; Poisson; Jacobi structure; strongly homotopy algebra; square-zero element method; graded cohomology; Schouten-Nijenhuis; Nijenhuis-Richardson; Grabowski-Marmo bracket; deformation theory; coalgebras; graded Loday structures; cohomologies; stem
UR - http://eudml.org/doc/116272
ER -
References
top- Füsun Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (1997), 105-141 Zbl0885.17020MR1466615
- Mourad Ammar, Deformation Quantization and Cohomologies of Poisson, Graded, and Homotopy Algebras, (2008)
- Mourad Ammar, Norbert Poncin, Formal Poisson cohomology of twisted -matrix induced structures, Israel J. Math. 165 (2008), 381-411 Zbl1146.53054MR2403627
- D. Arnal, D. Manchon, M. Masmoudi, Choix des signes pour la formalité de M. Kontsevich, Pacific J. Math. 203 (2002), 23-66 Zbl1055.53066MR1895924
- David Balavoine, Déformations et rigidité géométrique des algèbres de Leibniz, Comm. Algebra 24 (1996), 1017-1034 Zbl0855.17021MR1374652
- David Balavoine, Deformations of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) 202 (1997), 207-234, Amer. Math. Soc., Providence, RI Zbl0883.17004MR1436922
- Yuri L. Daletskii, Leon A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys. 39 (1997), 127-141 Zbl0869.58024MR1437747
- M. De Wilde, P. Lecomte, Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, Deformation theory of algebras and structures and applications (Il Ciocco, 1986) 247 (1988), 897-960, Kluwer Acad. Publ., Dordrecht Zbl0685.58039MR981635
- Alice Fialowski, Michael Penkava, Deformation theory of infinity algebras, J. Algebra 255 (2002), 59-88 Zbl1038.17012MR1935035
- V. T. Filippov, -L,ie algebras, Sibirsk. Mat. Zh. 26 (1985), 126-140, 191 Zbl0585.17002MR816511
- Murray Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103 Zbl0123.03101MR171807
- Victor Ginzburg, Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203-272 Zbl0855.18006MR1301191
- Janusz Grabowski, Giuseppe Marmo, Jacobi structures revisited, J. Phys. A 34 (2001), 10975-10990 Zbl0998.53054MR1872975
- Janusz Grabowski, Giuseppe Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A 36 (2003), 161-181 Zbl1039.53090MR1959019
- R. Ibáñez, M. de León, B. López, J. C. Marrero, E. Padrón, Duality and modular class of a Nambu-Poisson structure, J. Phys. A 34 (2001), 3623-3650 Zbl1021.53060MR1841496
- T. V. Kadeishvili, The algebraic structure in the homology of an -algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), 249-252 (1983) Zbl0535.55005MR720689
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
- Yvette Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996), 1243-1274 Zbl0858.17027MR1427124
- I. S. Krasilʼshchik, Supercanonical algebras and Schouten brackets, Mat. Zametki 49 (1991), 70-76, 160 Zbl0723.58020MR1101552
- P. A. B. Lecomte, P. W. Michor, H. Schicketanz, The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Algebra 77 (1992), 87-102 Zbl0752.17019MR1148273
- Manuel de León, Belén López, Juan C. Marrero, Edith Padrón, Lichnerowicz-Jacobi cohomology and homology of Jacobi manifolds: modular class and duality, (1999) Zbl1092.53060
- Manuel de León, Belén López, Juan C. Marrero, Edith Padrón, On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys. 44 (2003), 507-522 Zbl1092.53060MR1943175
- Manuel de León, Juan C. Marrero, Edith Padrón, Lichnerowicz-Jacobi cohomology, J. Phys. A 30 (1997), 6029-6055 Zbl0951.37033MR1482695
- André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300 Zbl0405.53024MR501133
- André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), 453-488 Zbl0407.53025MR524629
- Jean-Louis Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), 269-293 Zbl0806.55009MR1252069
- Jean-Louis Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), 189-196 Zbl0859.17015MR1379265
- Martin Markl, Steve Shnider, Jim Stasheff, Operads in algebra, topology and physics, 96 (2002), American Mathematical Society, Providence, RI Zbl1017.18001MR1898414
- Mohsen Masmoudi, Norbert Poncin, On a general approach to the formal cohomology of quadratic Poisson structures, J. Pure Appl. Algebra 208 (2007), 887-904 Zbl1174.17018MR2283433
- P. W. Michor, A. M. Vinogradov, -ary Lie and associative algebras, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 373-392 Zbl0928.17029MR1618134
- Yoichiro Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412 Zbl1027.70503MR455611
- Albert Nijenhuis, R. W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967), 89-105 Zbl0166.30202MR214636
- Jean-Michel Oudom, Coproduct and cogroups in the category of graded dual Leibniz algebras, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) 202 (1997), 115-135, Amer. Math. Soc., Providence, RI Zbl0880.17002MR1436919
- M. Penkava, Infinity Algebras, Cohomology and Cyclic Cohomology, and Infinitesimal Deformations, (2001)
- Anne Pichereau, Poisson (co)homology and isolated singularities, J. Algebra 299 (2006), 747-777 Zbl1113.17009MR2228339
- Norbert Poncin, Premier et deuxième espaces de cohomologie de l’algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions, Bull. Soc. Roy. Sci. Liège 67 (1998), 291-337 Zbl0971.17011MR1677564
- Norbert Poncin, On the cohomology of the Nijenhuis-Richardson graded Lie algebra of the space of functions of a manifold, J. Algebra 243 (2001), 16-40 Zbl1012.17014MR1851652
- Mikołaj Rotkiewicz, Cohomology ring of -Lie algebras, Extracta Math. 20 (2005), 219-232 Zbl1163.17300MR2243339
- Jim Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra 89 (1993), 231-235 Zbl0786.57017MR1239562
- Alexandre Vinogradov, Michael Vinogradov, On multiple generalizations of Lie algebras and Poisson manifolds, Secondary calculus and cohomological physics (Moscow, 1997) 219 (1998), 273-287, Amer. Math. Soc., Providence, RI Zbl1074.17501MR1640439
- Alexandre Vinogradov, Michael Vinogradov, Graded multiple analogs of Lie algebras, Acta Appl. Math. 72 (2002), 183-197 Zbl1020.17003MR1907945
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.