Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar[1]; Norbert Poncin[1]

  • [1] University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 1, page 355-387
  • ISSN: 0373-0956

Abstract

top
We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and 2 n -ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of 2 n -ary graded Lie algebras.

How to cite

top

Ammar, Mourad, and Poncin, Norbert. "Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras." Annales de l’institut Fourier 60.1 (2010): 355-387. <http://eudml.org/doc/116272>.

@article{Ammar2010,
abstract = {We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space $V$. The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on $V$ (resp. graded Loday structures on $V$, sequences that we call Loday infinity structures on $V$). We prove a minimal model theorem for Loday infinity algebras and observe that the $\text\{Lod\}_\{\!\infty \}$ category contains the $\text\{L\}_\{\!\infty \}$ category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and $2n$-ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of $2n$-ary graded Lie algebras.},
affiliation = {University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg); University of Luxembourg Campus Limpertsberg 162A, avenue de la Faïencerie 1511 Luxembourg City (Grand-Duchy of Luxembourg)},
author = {Ammar, Mourad, Poncin, Norbert},
journal = {Annales de l’institut Fourier},
keywords = {Zinbiel coalgebra; graded Loday; Lie; Poisson; Jacobi structure; strongly homotopy algebra; square-zero element method; graded cohomology; Schouten-Nijenhuis; Nijenhuis-Richardson; Grabowski-Marmo bracket; deformation theory; coalgebras; graded Loday structures; cohomologies; stem},
language = {eng},
number = {1},
pages = {355-387},
publisher = {Association des Annales de l’institut Fourier},
title = {Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras},
url = {http://eudml.org/doc/116272},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Ammar, Mourad
AU - Poncin, Norbert
TI - Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 355
EP - 387
AB - We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space $V$. The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on $V$ (resp. graded Loday structures on $V$, sequences that we call Loday infinity structures on $V$). We prove a minimal model theorem for Loday infinity algebras and observe that the $\text{Lod}_{\!\infty }$ category contains the $\text{L}_{\!\infty }$ category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and $2n$-ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of $2n$-ary graded Lie algebras.
LA - eng
KW - Zinbiel coalgebra; graded Loday; Lie; Poisson; Jacobi structure; strongly homotopy algebra; square-zero element method; graded cohomology; Schouten-Nijenhuis; Nijenhuis-Richardson; Grabowski-Marmo bracket; deformation theory; coalgebras; graded Loday structures; cohomologies; stem
UR - http://eudml.org/doc/116272
ER -

References

top
  1. Füsun Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (1997), 105-141 Zbl0885.17020MR1466615
  2. Mourad Ammar, Deformation Quantization and Cohomologies of Poisson, Graded, and Homotopy Algebras, (2008) 
  3. Mourad Ammar, Norbert Poncin, Formal Poisson cohomology of twisted r -matrix induced structures, Israel J. Math. 165 (2008), 381-411 Zbl1146.53054MR2403627
  4. D. Arnal, D. Manchon, M. Masmoudi, Choix des signes pour la formalité de M. Kontsevich, Pacific J. Math. 203 (2002), 23-66 Zbl1055.53066MR1895924
  5. David Balavoine, Déformations et rigidité géométrique des algèbres de Leibniz, Comm. Algebra 24 (1996), 1017-1034 Zbl0855.17021MR1374652
  6. David Balavoine, Deformations of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) 202 (1997), 207-234, Amer. Math. Soc., Providence, RI Zbl0883.17004MR1436922
  7. Yuri L. Daletskii, Leon A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys. 39 (1997), 127-141 Zbl0869.58024MR1437747
  8. M. De Wilde, P. Lecomte, Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, Deformation theory of algebras and structures and applications (Il Ciocco, 1986) 247 (1988), 897-960, Kluwer Acad. Publ., Dordrecht Zbl0685.58039MR981635
  9. Alice Fialowski, Michael Penkava, Deformation theory of infinity algebras, J. Algebra 255 (2002), 59-88 Zbl1038.17012MR1935035
  10. V. T. Filippov, n -L Q n , p * ,ie algebras, Sibirsk. Mat. Zh. 26 (1985), 126-140, 191 Zbl0585.17002MR816511
  11. Murray Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103 Zbl0123.03101MR171807
  12. Victor Ginzburg, Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203-272 Zbl0855.18006MR1301191
  13. Janusz Grabowski, Giuseppe Marmo, Jacobi structures revisited, J. Phys. A 34 (2001), 10975-10990 Zbl0998.53054MR1872975
  14. Janusz Grabowski, Giuseppe Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A 36 (2003), 161-181 Zbl1039.53090MR1959019
  15. R. Ibáñez, M. de León, B. López, J. C. Marrero, E. Padrón, Duality and modular class of a Nambu-Poisson structure, J. Phys. A 34 (2001), 3623-3650 Zbl1021.53060MR1841496
  16. T. V. Kadeishvili, The algebraic structure in the homology of an A ( ) -algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), 249-252 (1983) Zbl0535.55005MR720689
  17. Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
  18. Yvette Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996), 1243-1274 Zbl0858.17027MR1427124
  19. I. S. Krasilʼshchik, Supercanonical algebras and Schouten brackets, Mat. Zametki 49 (1991), 70-76, 160 Zbl0723.58020MR1101552
  20. P. A. B. Lecomte, P. W. Michor, H. Schicketanz, The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Algebra 77 (1992), 87-102 Zbl0752.17019MR1148273
  21. Manuel de León, Belén López, Juan C. Marrero, Edith Padrón, Lichnerowicz-Jacobi cohomology and homology of Jacobi manifolds: modular class and duality, (1999) Zbl1092.53060
  22. Manuel de León, Belén López, Juan C. Marrero, Edith Padrón, On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys. 44 (2003), 507-522 Zbl1092.53060MR1943175
  23. Manuel de León, Juan C. Marrero, Edith Padrón, Lichnerowicz-Jacobi cohomology, J. Phys. A 30 (1997), 6029-6055 Zbl0951.37033MR1482695
  24. André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300 Zbl0405.53024MR501133
  25. André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), 453-488 Zbl0407.53025MR524629
  26. Jean-Louis Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), 269-293 Zbl0806.55009MR1252069
  27. Jean-Louis Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), 189-196 Zbl0859.17015MR1379265
  28. Martin Markl, Steve Shnider, Jim Stasheff, Operads in algebra, topology and physics, 96 (2002), American Mathematical Society, Providence, RI Zbl1017.18001MR1898414
  29. Mohsen Masmoudi, Norbert Poncin, On a general approach to the formal cohomology of quadratic Poisson structures, J. Pure Appl. Algebra 208 (2007), 887-904 Zbl1174.17018MR2283433
  30. P. W. Michor, A. M. Vinogradov, n -ary Lie and associative algebras, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 373-392 Zbl0928.17029MR1618134
  31. Yoichiro Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412 Zbl1027.70503MR455611
  32. Albert Nijenhuis, R. W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967), 89-105 Zbl0166.30202MR214636
  33. Jean-Michel Oudom, Coproduct and cogroups in the category of graded dual Leibniz algebras, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) 202 (1997), 115-135, Amer. Math. Soc., Providence, RI Zbl0880.17002MR1436919
  34. M. Penkava, Infinity Algebras, Cohomology and Cyclic Cohomology, and Infinitesimal Deformations, (2001) 
  35. Anne Pichereau, Poisson (co)homology and isolated singularities, J. Algebra 299 (2006), 747-777 Zbl1113.17009MR2228339
  36. Norbert Poncin, Premier et deuxième espaces de cohomologie de l’algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions, Bull. Soc. Roy. Sci. Liège 67 (1998), 291-337 Zbl0971.17011MR1677564
  37. Norbert Poncin, On the cohomology of the Nijenhuis-Richardson graded Lie algebra of the space of functions of a manifold, J. Algebra 243 (2001), 16-40 Zbl1012.17014MR1851652
  38. Mikołaj Rotkiewicz, Cohomology ring of n -Lie algebras, Extracta Math. 20 (2005), 219-232 Zbl1163.17300MR2243339
  39. Jim Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra 89 (1993), 231-235 Zbl0786.57017MR1239562
  40. Alexandre Vinogradov, Michael Vinogradov, On multiple generalizations of Lie algebras and Poisson manifolds, Secondary calculus and cohomological physics (Moscow, 1997) 219 (1998), 273-287, Amer. Math. Soc., Providence, RI Zbl1074.17501MR1640439
  41. Alexandre Vinogradov, Michael Vinogradov, Graded multiple analogs of Lie algebras, Acta Appl. Math. 72 (2002), 183-197 Zbl1020.17003MR1907945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.