Bicyclotomic polynomials and impossible intersections
David Masser[1]; Umberto Zannier[2]
- [1] Mathematisches Institut Universität Basel, Rheinsprung 21 4051 Basel, Switzerland
- [2] Scuola Normale, Piazza Cavalieri 7 56126 Pisa, Italy
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 3, page 635-659
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMasser, David, and Zannier, Umberto. "Bicyclotomic polynomials and impossible intersections." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 635-659. <http://eudml.org/doc/275776>.
@article{Masser2013,
abstract = {In a recent paper we proved that there are at most finitely many complex numbers $t \ne 0,1$ such that the points $(2,\sqrt\{2(2-t)\})$ and $(3, \sqrt\{6(3-t)\})$ are both torsion on the Legendre elliptic curve defined by $y^2=x(x-1)(x-t)$. In a sequel we gave a generalization to any two points with coordinates algebraic over the field $\{\bf Q\}(t)$ and even over $\{\bf C\}(t)$. Here we reconsider the special case $(u,\sqrt\{u(u-1)(u-t)\})$ and $(v, \sqrt\{v(v-1)(v-t)\})$ with complex numbers $u$ and $v$.},
affiliation = {Mathematisches Institut Universität Basel, Rheinsprung 21 4051 Basel, Switzerland; Scuola Normale, Piazza Cavalieri 7 56126 Pisa, Italy},
author = {Masser, David, Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cyclotomic polynomials; transcendence degree; elliptic curves; elliptic threefolds},
language = {eng},
month = {11},
number = {3},
pages = {635-659},
publisher = {Société Arithmétique de Bordeaux},
title = {Bicyclotomic polynomials and impossible intersections},
url = {http://eudml.org/doc/275776},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Masser, David
AU - Zannier, Umberto
TI - Bicyclotomic polynomials and impossible intersections
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 635
EP - 659
AB - In a recent paper we proved that there are at most finitely many complex numbers $t \ne 0,1$ such that the points $(2,\sqrt{2(2-t)})$ and $(3, \sqrt{6(3-t)})$ are both torsion on the Legendre elliptic curve defined by $y^2=x(x-1)(x-t)$. In a sequel we gave a generalization to any two points with coordinates algebraic over the field ${\bf Q}(t)$ and even over ${\bf C}(t)$. Here we reconsider the special case $(u,\sqrt{u(u-1)(u-t)})$ and $(v, \sqrt{v(v-1)(v-t)})$ with complex numbers $u$ and $v$.
LA - eng
KW - cyclotomic polynomials; transcendence degree; elliptic curves; elliptic threefolds
UR - http://eudml.org/doc/275776
ER -
References
top- E. Bombieri, D. Masser and U. Zannier, Finiteness results for multiplicatively dependent points on complex curves, Michigan Math. J. 51 (2003), 451–466. Zbl1048.11056MR2021000
- F. Beukers and C. J. Smyth, Cyclotomic points on curves, Number theory for the millennium I (Urbana 2000), A.K. Peters Ltd. (2002), 67–85. Zbl1029.11009MR1956219
- S. Lang, Elliptic functions, Addison-Wesley (1973). Zbl0316.14001MR409362
- D. Masser, Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc. 311 (1989), 413–424. Zbl0673.14016MR974783
- D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves. C. R. Acad. Sci. Paris, Ser. I 346 (2008), 491–494. Zbl1197.11066MR2412783
- D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132 (2010), 1677–1691. Zbl1225.11078MR2766181
- D. Masser and U. Zannier, Torsion points on families of squares of elliptic curves, Math. Annalen 352 (2012), 453–484. Zbl1306.11047MR2874963
- J. Pila, Integer points on the dilation of a subanalytic surface, Quart. J. Math. 55 (2004), 207–223. Zbl1111.32004MR2068319
- J. Pila, Counting rational points on a certain exponential-algebraic surface, Annales Institut Fourier 60 (2010), 489–514. Zbl1210.11074MR2667784
- M. Raynaud, Courbes sur une variété abélienne et points de torsion, Inventiones Math. 71 (1983), 207–233. Zbl0564.14020MR688265
- J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. Zbl0122.05001MR137689
- J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag (1986). Zbl1194.11005MR817210
- A. Weil, Foundations of algebraic geometry, American Math. Soc. Colloquium Pub. XXIX (1946). Zbl0168.18701MR23093
- U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Annals of Math. Studies, 181, Princeton (2012). Zbl1246.14003MR2918151
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.