The computation of Stiefel-Whitney classes
- [1] Université de Strasbourg-CNRS IRMA 7 rue René Descartes 67084 Strasbourg (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 565-606
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGuillot, Pierre. "The computation of Stiefel-Whitney classes." Annales de l’institut Fourier 60.2 (2010): 565-606. <http://eudml.org/doc/116282>.
@article{Guillot2010,
abstract = {The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).Next, we give an application: thanks to the new information gathered, we can in many cases determine which cohomology classes are supported by algebraic varieties.},
affiliation = {Université de Strasbourg-CNRS IRMA 7 rue René Descartes 67084 Strasbourg (France)},
author = {Guillot, Pierre},
journal = {Annales de l’institut Fourier},
keywords = {Cohomology of groups; characteristic classes; algorithms; computers; chow rings; Steenrod algebras; cohomology of groups; computation; Chow rings; cohomology rings; Stiefel-Whitney classes; Steenrod operations},
language = {eng},
number = {2},
pages = {565-606},
publisher = {Association des Annales de l’institut Fourier},
title = {The computation of Stiefel-Whitney classes},
url = {http://eudml.org/doc/116282},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Guillot, Pierre
TI - The computation of Stiefel-Whitney classes
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 565
EP - 606
AB - The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).Next, we give an application: thanks to the new information gathered, we can in many cases determine which cohomology classes are supported by algebraic varieties.
LA - eng
KW - Cohomology of groups; characteristic classes; algorithms; computers; chow rings; Steenrod algebras; cohomology of groups; computation; Chow rings; cohomology rings; Stiefel-Whitney classes; Steenrod operations
UR - http://eudml.org/doc/116282
ER -
References
top- William W. Adams, Philippe Loustaunau, An introduction to Gröbner bases, 3 (1994), American Mathematical Society, Providence, RI Zbl0803.13015MR1287608
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. (1961), 23-64 Zbl0107.02303MR148722
- Patrick Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc. 355 (2003), 1869-1903 (electronic) Zbl1045.55005MR1953530
- Jon F. Carlson, personal webpage
- Jon F. Carlson, Calculating group cohomology: tests for completion, J. Symbolic Comput. 31 (2001), 229-242 Zbl0979.20047MR1806218
- Jon F. Carlson, Lisa Townsley, Luis Valeri-Elizondo, Mucheng Zhang, Cohomology rings of finite groups, 3 (2003), Kluwer Academic Publishers, Dordrecht Zbl1056.20039MR2028960
- Leonard Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc. 115 (1965), 180-193 Zbl0133.28403MR212099
- Leonard Evens, Daniel S. Kahn, Chern classes of certain representations of symmetric groups, Trans. Amer. Math. Soc. 245 (1978), 309-330 Zbl0402.20009MR511412
- Zbigniew Fiedorowicz, Stewart Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, 674 (1978), Springer, Berlin Zbl0403.55010MR513424
- William Fulton, Robert MacPherson, Characteristic classes of direct image bundles for covering maps, Ann. of Math. (2) 125 (1987), 1-92 Zbl0628.55010MR873377
- David J. Green, personal webpage
- Pierre Guillot, personal webpage
- Pierre Guillot, The Chow rings of and Spin(7), J. Reine Angew. Math. 604 (2007), 137-158 Zbl1122.14005MR2320315
- Pierre Guillot, Addendum to the paper: “The Chow rings of and ” [J. Reine Angew. Math. 604 (2007), 137–158;], J. Reine Angew. Math. 619 (2008), 233-235 Zbl1142.14303MR2414952
- Bruno Kahn, Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles, Invent. Math. 78 (1984), 223-256 Zbl0557.12014MR767193
- Andrzej Kozlowski, The Evens-Kahn formula for the total Stiefel-Whitney class, Proc. Amer. Math. Soc. 91 (1984), 309-313 Zbl0514.57005MR740192
- Andrzej Kozlowski, Transfers in the group of multiplicative units of the classical cohomology ring and Stiefel-Whitney classes, Publ. Res. Inst. Math. Sci. 25 (1989), 59-74 Zbl0687.55005MR999350
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un -groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. (1992), 135-244 Zbl0857.55011MR1179079
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171 Zbl0080.38003MR99653
- John W. Milnor, James D. Stasheff, Characteristic classes, (1974), Princeton University Press, Princeton, N. J. Zbl0298.57008MR440554
- Daniel Quillen, The Adams conjecture, Topology 10 (1971), 67-80 Zbl0219.55013MR279804
- Daniel Quillen, The cohomology rings of extra-special -groups and the spinor groups, Math. Ann. 194 (1971), 197-212 Zbl0225.55015MR290401
- Lionel Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, (1994), University of Chicago Press, Chicago, IL Zbl0871.55001MR1282727
- Jean-Pierre Serre, Représentations linéaires des groupes finis, (1978), Hermann, Paris Zbl0407.20003MR543841
- C. B. Thomas, Characteristic classes and the cohomology of finite groups, 9 (1986), Cambridge University Press, Cambridge Zbl0618.20036MR878978
- Burt Totaro, The Chow ring of a classifying space, Algebraic -theory (Seattle, WA, 1997) 67 (1999), 249-281, Amer. Math. Soc., Providence, RI Zbl0967.14005MR1743244
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.