Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire

Jean Lannes

Publications Mathématiques de l'IHÉS (1992)

  • Volume: 75, page 135-244
  • ISSN: 0073-8301

How to cite

top

Lannes, Jean. "Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire." Publications Mathématiques de l'IHÉS 75 (1992): 135-244. <http://eudml.org/doc/104079>.

@article{Lannes1992,
author = {Lannes, Jean},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Lannes’ -functor; elementary abelian -group; Bousfield-Kan -completion; function spaces; classifying space; unstable module; unstable algebra; Steenrod algebra},
language = {fre},
pages = {135-244},
publisher = {Institut des Hautes Études Scientifiques},
title = {Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire},
url = {http://eudml.org/doc/104079},
volume = {75},
year = {1992},
}

TY - JOUR
AU - Lannes, Jean
TI - Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire
JO - Publications Mathématiques de l'IHÉS
PY - 1992
PB - Institut des Hautes Études Scientifiques
VL - 75
SP - 135
EP - 244
LA - fre
KW - Lannes’ -functor; elementary abelian -group; Bousfield-Kan -completion; function spaces; classifying space; unstable module; unstable algebra; Steenrod algebra
UR - http://eudml.org/doc/104079
ER -

References

top
  1. [Ad] J. F. ADAMS, Two Theorems of J. Lannes, manuscrit, 1985. 
  2. [An] D. W. ANDERSON, A generalisation of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc., 78 (1972), 784-786. Zbl0255.55012MR46 #9987
  3. [AS] M. F. ATIYAH et G. SEGAL, Equivariant cohomology and localization, lecture notes, Warwick, 1965. 
  4. [BK1] A. K. BOUSFIELD et D. M. KAN, Homotopy limits, Completions and Localizations, Springer L.N.M., 304, 1972. Zbl0259.55004MR51 #1825
  5. [BK2] A. K. BOUSFIELD et D. M. KAN, The homotopy spectral sequence of a space with coefficients in a ring, Topology, 11 (1972), 79-106. Zbl0202.22803MR44 #1031
  6. [Bor] A. BOREL et al., Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton, 1960. Zbl0091.37202MR22 #7129
  7. [Bou1] A. K. BOUSFIELD, Nice homology coalgebras, Trans. Amer. Math. Soc., 148 (1970), 473-489. Zbl0199.33302MR41 #3564
  8. [Bou2] A. K. BOUSFIELD, On the homology spectral sequence of a cosimplicial space, Amer. J. Math., 109 (1987), 361-394. Zbl0623.55009MR88j:55017
  9. [Pou3] A. K. BOUSFIELD, Homotopy spectral sequences and obstructions, Israël J. Math., 66 (1989), 54-104. Zbl0677.55020MR91a:55027
  10. [Ca1] G. CARLSSON, G. B. Segal's Burnside ring conjecture for (Z/2)k, Topology, 22 (1983), 83-103. Zbl0504.55011MR84a:55007
  11. [Ca2] G. CARLSSON, Segal's Burnside ring conjecture and the homotopy limit problem, Proc. Durham Symposium on Homotopy Theory, 1985, London, Math. Soc. L.N.S., 117, Camb. Univ. Press, 1987, 6-34. Zbl0656.55010MR89g:55020
  12. [Ca3] G. CARLSSON, Equivariant stable homotopy and Sullivan's conjecture, Invent. math., 103 (1991), 497-527. Zbl0736.55008MR92g:55007
  13. [CE] H. CARTAN et S. EILENBERG, Homological algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR17,1040e
  14. [DDK] E. DROR, W. G. DWYER et D. M. KAN, An arithmetic square for virtually nilpotent spaces, Ill. J. of Math., 21 (1977), 242-254. Zbl0355.55015MR55 #11246
  15. [De] M. DEMAZURE, Lectures on p-Divisible Groups, Springer L.N.M., 302, 1972. Zbl0247.14010MR49 #9000
  16. [DMN] W. G. DWYER, H. R. MILLER et J. A. NEISENDORFER, Fibrewise completion and unstable Adams spectral sequence, Israël J. Math., 66 (1989), 160-178. Zbl0686.55014MR90i:55034
  17. [DMW1] W. G. DWYER, H. R. MILLER et C. W. WILKERSON, The Homotopic Uniqueness of BS3, Algebraic Topology, Barcelona, 1986 (proceedings), Springer L.N.M., 1298 (1987), 90-105. Zbl0654.55015MR89e:55019
  18. [DMW2] W. G. DWYER, H. R. MILLER et C. W. WILKERSON, Homotopical Uniqueness of Classifysing Spaces, Topology, 31 (1992), 29-45. Zbl0748.55005MR92m:55013
  19. [Dr] E. DROR, Pro-nilpotent representation of homology types, Proc. Amer. Math. Soc., 38 (1973), 657-660. Zbl0275.55017MR47 #2593
  20. [DS] E. DROR FARJOUN et J. SMITH, A Geometric Interpretation of Lannes' Functor T, Théorie de l'homotopie, Astérisque, 191 (1990), 87-95. Zbl0723.55006MR92h:55013
  21. [Dw] W. G. DWYER, Strong convergence of the Eilenberg-Moore spectral sequence, Topology, 13 (1974), 255-265. Zbl0303.55012MR52 #15464
  22. [DW] W. G. DWYER et C. W. WILKERSON, Smith theory and the functor T, Comm. Math. Helv., 66 (1991), 1-17. Zbl0726.55011MR92i:55006
  23. [DZ] W. G. DWYER et A. ZABRODSKY, Maps between classifying spaces, Algebraic Topology, Barcelona, 1986 (proceedings), Springer L.N.M., 1298 (1987), 106-119. Zbl0646.55007MR89b:55018
  24. [Fr] P. FREYD, Abelian Categories : An introduction to the theory of functors, New York, Harper & Row, 1964. Zbl0121.02103MR29 #3517
  25. [GZ] P. GABRIEL et M. ZISMAN, Calculus of fractions and homotopy theory, Ergebnisse der Math., 35, Springer, 1967. Zbl0186.56802MR35 #1019
  26. [HLS1] H.-W. HENN, J. LANNES et L. SCHWARTZ, Analytic functors unstable algebras and cohomology of classifying spaces, Algebraic Topology, Northwestern University, 1988 (proceedings), Cont. Math., 96 (1989), 197-220. Zbl0683.55013MR90j:55025
  27. [HLS2] H.-W. HENN, J. LANNES et L. SCHWARTZ, The Categories of unstable modules and unstable algebras modulo nilpotent objects, à paraître dans American Journal of Mathematics. Zbl0805.55011
  28. [Hs] W. Y. HSIANG, Cohomology Theory of Topological Transformation Groups, New York, Springer Verlag, 1975. Zbl0429.57011MR54 #11363
  29. [JMO] S. JACKOWSKI, J. E. MCCLURE et R. OLIVER, Self-maps of classifying spaces of compact simple Lie groups, Bull. Amer. Math. Soc., 22 (1990), 65-72. Zbl0692.55013MR90f:55023
  30. [La1] J. LANNES, Sur la cohomologie modulo p des p-groupes abéliens élémentaires, Proc. Durham Symposium on Homotopy Theory, 1985, London, Math. Soc. L.N.S., 117, Camb. Univ. Press, 1987, 97-116. Zbl0654.55013MR89e:55037
  31. [La2] J. LANNES, Cohomology of groups and function spaces, preprint 1986. 
  32. [LSc1] J. LANNES et L. SCHWARTZ, Sur la structure des A-modules instables injectifs, Topology, 28 (1989), 153-169. Zbl0683.55016MR90h:55027
  33. [LSc2] J. LANNES et L. SCHWARTZ, A propos de conjectures de Serre et Sullivan, Invent. math., 83 (1986), 593-603. Zbl0563.55011MR87f:55009
  34. [LSt] P. S. LANDWEBER et R. E. STONG, The depth of rings of invariants over finite fields, Number Theory New York, 1984-1985, Springer L.N.M., 1240 (1987), 259-274. Zbl0623.55007MR88k:13004
  35. [LZ1] J. LANNES et S. ZARATI, Sur les U-injectifs, Ann. Scient. Ec. Norm. Sup., 19 (1986), 1-31. Zbl0608.18006MR89a:55032
  36. [LZ2] J. LANNES et S. ZARATI, Foncteurs dérivés de la déstabilisation, Math. Z., 194 (1987), 25-59. Zbl0627.55014MR88j:55014
  37. [McL] S. MAC LANE, Categories for the Working Mathematician, Graduate Texts in Math., 5, Springer, 1971. Zbl0232.18001MR50 #7275
  38. [Ma] J. P. MAY, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, 11, 1967. Zbl0165.26004MR36 #5942
  39. [Mi1] H. R. MILLER, The Sullivan conjecture on maps from classifying spaces, Annals of Math., 120 (1984), 39-87, et corrigendum, Annals of Math., 121 (1985), 605-609. Zbl0575.55011MR85i:55012
  40. [Mi2] H. R. MILLER, The Sullivan Conjecture and Homotopical Representation Theory, Proc. Internat. Congr. Math. Berkeley, 1986, 580-589. Zbl0678.55008MR89f:55016
  41. [Mi3] H. R. MILLER, Massey-Peterson towers and maps from classifying spaces, Algebraic Topology, Aarhus, 1982 (proceedings), Springer L.N.M., 1051 (1984), 401-417. Zbl0542.55016MR86b:55011
  42. [Mil] J. W. MILNOR, On axiomatic homology theory, Pac. J. Math., 12 (1962), 337-341. Zbl0114.39604MR28 #2544
  43. [Mo] F. MOREL, Quelques remarques sur la cohomologie modulo-p continue des pro-p-espaces et les résultats de J. Lannes concernant les espaces hom (BV,X), preprint 1991, à paraître dans les Annales Scientifiques de l'Ecole Normale Supérieure. Zbl0845.55015
  44. [Qui1] D. G. QUILLEN, Homotopical Algebra, Springer L.N.M., 43, 1967. Zbl0168.20903MR36 #6480
  45. [Qui2] D. G. QUILLEN, The spectrum of an equivariant cohomology rung, I, II, Ann. of Math., 94 (1971), 549-572 et 573-602. Zbl0247.57013MR45 #7743
  46. [Re] D. L. RECTOR, Steenrod operations in the Eilenberg-Moore spectral sequence, Comm. Math. Helv., 45 (1970), 540-552. Zbl0209.27501MR43 #4040
  47. [Se] J.-P. SERRE, Sur la dimension cohomologique des groupes profinis, Topology, 3 (1965), 413-420. Zbl0136.27402MR31 #4853
  48. [SE] N. E. STEENROD et D. B. A. EPSTEIN, Cohomology operations, Princeton Univ. Press, 1962. Zbl0102.38104MR26 #3056
  49. [Su] D. SULLIVAN, Geometric topology, part I : Localization, periodicity and Galois symmetry, M.I.T. Press, 1970. 
  50. [Wa] C. E. WATTS, Intrinsic Characterization of Some Additive Functors, Proc. Amer. Math. Soc., 11 (1960), 5-8. Zbl0093.04101MR22 #9528
  51. [Za1] S. ZARATI, Quelques propriétés du foncteur HomUp( ,H*V), Algebraic Topology Göttingen, 1984, Springer L.N.M., 1172 (1985), 204-209. Zbl0583.55011MR87b:55017
  52. [Za2] S. ZARATI, Dérivés du foncteur de déstabilisation en caractéristique impaire et applications, thèse de doctorat d'Etat, Orsay, 1984. 

Citations in EuDML Documents

top
  1. Jean Lannes, Théorie homotopique des groupes de Lie
  2. W. Dwyer, C. Wilkerson, Product splittings for p-compact groups
  3. J. Lannes, S. Zarati, Théorie de Smith algébrique et classification des H * V - 𝒰 -injectifs
  4. Fabien Morel, Ensembles profinis simpliciaux et interprétation géométrique du foncteur T
  5. Gérald Gaudens, Lionel Schwartz, Applications depuis K ( / p , 2 ) et une conjecture de N. Kuhn
  6. Pierre Guillot, The computation of Stiefel-Whitney classes
  7. Aurélien Djament, Foncteurs de division et structure de I 2 Λ n dans la catégorie
  8. Nguyen Dang Ho Hai, Un complexe de Koszul de modules instables et cohomotopie d’un spectre de Thom
  9. Dietrich Notbohm, Topological realization of a family of pseudoreflection groups
  10. Fabien Morel, Quelques remarques sur la cohomologie modulo p continue des pro- p -espaces et les résultats de J. Lannes concernant les espaces fonctionnels hom ( B V , X )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.