Classification of strict wonderful varieties
Paolo Bravi[1]; Stéphanie Cupit-Foutou[2]
- [1] Università di Roma La Sapienza Dipartimento di Matematica P. le Aldo Moro 5 00185 Roma (Italy)
- [2] Universität zu Köln Mathematisches Institut Weyertal Str. 86-90 50931 Köln (Germany)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 641-681
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBravi, Paolo, and Cupit-Foutou, Stéphanie. "Classification of strict wonderful varieties." Annales de l’institut Fourier 60.2 (2010): 641-681. <http://eudml.org/doc/116284>.
@article{Bravi2010,
abstract = {In the setting of strict wonderful varieties we prove Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that primitive strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and model spaces. To make the paper as self-contained as possible, we also gather some known results on these families and more generally on wonderful varieties.},
affiliation = {Università di Roma La Sapienza Dipartimento di Matematica P. le Aldo Moro 5 00185 Roma (Italy); Universität zu Köln Mathematisches Institut Weyertal Str. 86-90 50931 Köln (Germany)},
author = {Bravi, Paolo, Cupit-Foutou, Stéphanie},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces; spherical varieties},
language = {eng},
number = {2},
pages = {641-681},
publisher = {Association des Annales de l’institut Fourier},
title = {Classification of strict wonderful varieties},
url = {http://eudml.org/doc/116284},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Bravi, Paolo
AU - Cupit-Foutou, Stéphanie
TI - Classification of strict wonderful varieties
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 641
EP - 681
AB - In the setting of strict wonderful varieties we prove Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that primitive strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and model spaces. To make the paper as self-contained as possible, we also gather some known results on these families and more generally on wonderful varieties.
LA - eng
KW - Spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces; spherical varieties
UR - http://eudml.org/doc/116284
ER -
References
top- D. N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49-78 Zbl0537.14033MR739893
- N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, 1337 (1968), Hermann, Paris Zbl0186.33001MR453824
- P. Bravi, Wonderful varieties of type E, Represent. Theory 11 (2007), 174-191 Zbl1135.14037MR2346359
- P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety Zbl1171.14029
- P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800-2821 Zbl1171.14029MR2397467
- P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory 9 (2005), 578-637 Zbl1222.14099MR2183057
- M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189-208 Zbl0642.14011MR906369
- M. Brion, Variétés sphériques, (1997)
- R. K. Brylinski, B. Kostant, The variety of all invariant symplectic structures on a homogeneous space and normalizers of isotropy subgroups, Symplectic Geometry and Mathematical Physics (1991), 80-113, et al.Donato P.D. P., Basel Zbl0813.53033MR1156535
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) (1983), 1-44, Springer, Berlin Zbl0581.14041MR718125
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 34 (2001), AMS, Providence, RI Zbl0993.53002MR1834454
- F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
- F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
- M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153 Zbl0402.22006MR528837
- I. V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), 315-343 Zbl1175.14035MR2495078
- D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), 249-258 Zbl0912.14017MR1417712
- D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226 Zbl1085.14039MR1896179
- D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), 292-319 Zbl1116.22006MR2326148
- D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245 Zbl0545.14010MR705534
- I. V. Mikityuk, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces (in Russian), Math. Sbornik 129 (1986), 514-534 Zbl0621.70005MR842398
- D. I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), 223-237 Zbl0822.14024MR1277527
- D. I. Panyushev, Some amazing properties of spherical nilpotent orbits, Math. Z. 245 (2003), 557-580 Zbl1101.17012MR2021571
- G. Pezzini, Wonderful varieties of type C, (2003), Rome Zbl1180.14050
- G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), 793-812 Zbl1122.14036MR2274535
- R. Steinberg, Endomorphisms of linear algebraic groups, 80 (1968), AMS, Providence, RI Zbl0164.02902MR230728
- D. Timashev, Homogeneous spaces and equivariant embeddings Zbl1237.14057
- T. Vust, Plongements d’espaces symétriques algèbriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 165-195 Zbl0728.14041MR1076251
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.