Classification of strict wonderful varieties

Paolo Bravi[1]; Stéphanie Cupit-Foutou[2]

  • [1] Università di Roma La Sapienza Dipartimento di Matematica P. le Aldo Moro 5 00185 Roma (Italy)
  • [2] Universität zu Köln Mathematisches Institut Weyertal Str. 86-90 50931 Köln (Germany)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 641-681
  • ISSN: 0373-0956

Abstract

top
In the setting of strict wonderful varieties we prove Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that primitive strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and model spaces. To make the paper as self-contained as possible, we also gather some known results on these families and more generally on wonderful varieties.

How to cite

top

Bravi, Paolo, and Cupit-Foutou, Stéphanie. "Classification of strict wonderful varieties." Annales de l’institut Fourier 60.2 (2010): 641-681. <http://eudml.org/doc/116284>.

@article{Bravi2010,
abstract = {In the setting of strict wonderful varieties we prove Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that primitive strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and model spaces. To make the paper as self-contained as possible, we also gather some known results on these families and more generally on wonderful varieties.},
affiliation = {Università di Roma La Sapienza Dipartimento di Matematica P. le Aldo Moro 5 00185 Roma (Italy); Universität zu Köln Mathematisches Institut Weyertal Str. 86-90 50931 Köln (Germany)},
author = {Bravi, Paolo, Cupit-Foutou, Stéphanie},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces; spherical varieties},
language = {eng},
number = {2},
pages = {641-681},
publisher = {Association des Annales de l’institut Fourier},
title = {Classification of strict wonderful varieties},
url = {http://eudml.org/doc/116284},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Bravi, Paolo
AU - Cupit-Foutou, Stéphanie
TI - Classification of strict wonderful varieties
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 641
EP - 681
AB - In the setting of strict wonderful varieties we prove Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that primitive strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and model spaces. To make the paper as self-contained as possible, we also gather some known results on these families and more generally on wonderful varieties.
LA - eng
KW - Spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces; spherical varieties
UR - http://eudml.org/doc/116284
ER -

References

top
  1. D. N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49-78 Zbl0537.14033MR739893
  2. N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, 1337 (1968), Hermann, Paris Zbl0186.33001MR453824
  3. P. Bravi, Wonderful varieties of type E, Represent. Theory 11 (2007), 174-191 Zbl1135.14037MR2346359
  4. P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety Zbl1171.14029
  5. P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800-2821 Zbl1171.14029MR2397467
  6. P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory 9 (2005), 578-637 Zbl1222.14099MR2183057
  7. M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189-208 Zbl0642.14011MR906369
  8. M. Brion, Variétés sphériques, (1997) 
  9. R. K. Brylinski, B. Kostant, The variety of all invariant symplectic structures on a homogeneous space and normalizers of isotropy subgroups, Symplectic Geometry and Mathematical Physics (1991), 80-113, et al.Donato P.D. P., Basel Zbl0813.53033MR1156535
  10. C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) (1983), 1-44, Springer, Berlin Zbl0581.14041MR718125
  11. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 34 (2001), AMS, Providence, RI Zbl0993.53002MR1834454
  12. F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  13. F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
  14. M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153 Zbl0402.22006MR528837
  15. I. V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), 315-343 Zbl1175.14035MR2495078
  16. D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), 249-258 Zbl0912.14017MR1417712
  17. D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226 Zbl1085.14039MR1896179
  18. D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), 292-319 Zbl1116.22006MR2326148
  19. D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245 Zbl0545.14010MR705534
  20. I. V. Mikityuk, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces (in Russian), Math. Sbornik 129 (1986), 514-534 Zbl0621.70005MR842398
  21. D. I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), 223-237 Zbl0822.14024MR1277527
  22. D. I. Panyushev, Some amazing properties of spherical nilpotent orbits, Math. Z. 245 (2003), 557-580 Zbl1101.17012MR2021571
  23. G. Pezzini, Wonderful varieties of type C, (2003), Rome Zbl1180.14050
  24. G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), 793-812 Zbl1122.14036MR2274535
  25. R. Steinberg, Endomorphisms of linear algebraic groups, 80 (1968), AMS, Providence, RI Zbl0164.02902MR230728
  26. D. Timashev, Homogeneous spaces and equivariant embeddings Zbl1237.14057
  27. T. Vust, Plongements d’espaces symétriques algèbriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 165-195 Zbl0728.14041MR1076251
  28. B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.