Classification of spherical varieties
Paolo Bravi[1]
- [1] Dipartimento di Matematica G. Castelnuovo, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy
Les cours du CIRM (2010)
- Volume: 1, Issue: 1, page 99-111
- ISSN: 2108-7164
Access Full Article
topAbstract
topHow to cite
topBravi, Paolo. "Classification of spherical varieties." Les cours du CIRM 1.1 (2010): 99-111. <http://eudml.org/doc/116366>.
@article{Bravi2010,
abstract = {We give a short introduction to the problem of classification of spherical varieties, by presenting the Luna conjecture about the classification of wonderful varieties and illustrating some of the related currently known results.},
affiliation = {Dipartimento di Matematica G. Castelnuovo, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy},
author = {Bravi, Paolo},
journal = {Les cours du CIRM},
keywords = {spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces},
language = {eng},
number = {1},
pages = {99-111},
publisher = {CIRM},
title = {Classification of spherical varieties},
url = {http://eudml.org/doc/116366},
volume = {1},
year = {2010},
}
TY - JOUR
AU - Bravi, Paolo
TI - Classification of spherical varieties
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 1
SP - 99
EP - 111
AB - We give a short introduction to the problem of classification of spherical varieties, by presenting the Luna conjecture about the classification of wonderful varieties and illustrating some of the related currently known results.
LA - eng
KW - spherical varieties; wonderful varieties; symmetric varieties; spherical nilpotent orbits; model spaces
UR - http://eudml.org/doc/116366
ER -
References
top- D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49–78. Zbl0537.14033MR739893
- V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83–117. Zbl1081.14005MR2092127
- P. Bravi, Wonderful varieties of type , Represent. Theory, 11 (2007), 174–191. Zbl1135.14037MR2346359
- P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800–2821. Zbl1171.14029MR2397467
- P. Bravi, S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), to appear. Zbl1195.14068
- P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra, to appear. Zbl1231.14040
- P. Bravi, G. Pezzini, Wonderful varieties of type , Represent. Theory, 9 (2005), 578–637. Zbl1222.14099MR2183057
- P. Bravi, G. Pezzini, Wonderful varieties of type B and C, arXiv:0909.3771v1 .
- M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189–208. Zbl0642.14011MR906369
- M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143. Zbl0729.14038MR1068418
- M. Brion, in this volume.
- S. Cupit-Foutou, Invariant Hilbert schemes and wonderful varieties, arXiv:0811.1567v2 . Zbl1086.14039
- S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907.2852v1 . Zbl1195.14068
- C. De Concini, M. Goresky, R. MacPharson, C. Procesi, On the geometry of quadrics and their degenerations, Comment. Math. Helv. 63 (1988), 337–413. Zbl0693.14023MR960767
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math. 996, 1–44, Springer, Berlin, 1983. Zbl0581.14041MR718125
- M. Haiman, B. Sturmfels, Multigraded Hilbert schemes, J. Algebraic Geom. 13 (2004), 725–769. Zbl1072.14007MR2073194
- F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153–174. Zbl0862.14034MR1311823
- M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129–153. Zbl0402.22006MR528837
- I.V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 No. 2 (2009), 315–343. Zbl1175.14035MR2495078
- I.V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble), 59 (2009), no. 3, 1105–1134. Zbl1191.14075MR2543664
- I.V. Losev, in this volume.
- D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), 249–258. Zbl0912.14017MR1417712
- D. Luna, Variétés sphériques de type , Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226. Zbl1085.14039MR1896179
- D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245. Zbl0545.14010MR705534
- I.V. Mikityuk, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces (in Russian), Math. Sbornik 129, 171 (1986), 514–534. Zbl0621.70005MR842398
- G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), 793–812. Zbl1122.14036MR2274535
- G. Pezzini, in this volume.
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375–403. Zbl0921.14031MR1424449
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.