Dispersive and Strichartz estimates for the wave equation in domains with boundary
- [1] Université de Nice Sophia-Antipolis, Laboratoire J.A.Dieudonné, Parc Valrose 06108 Nice Cedex 02 FRANCE
Journées Équations aux dérivées partielles (2010)
- Volume: 347, Issue: 3, page 1-19
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topIvanovici, Oana. "Dispersive and Strichartz estimates for the wave equation in domains with boundary." Journées Équations aux dérivées partielles 347.3 (2010): 1-19. <http://eudml.org/doc/116377>.
@article{Ivanovici2010,
abstract = {In this note we consider a strictly convex domain $\Omega \subset \mathbb\{R\}^d$ of dimension $d\ge 2$ with smooth boundary $\partial \Omega \ne \emptyset$ and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.},
affiliation = {Université de Nice Sophia-Antipolis, Laboratoire J.A.Dieudonné, Parc Valrose 06108 Nice Cedex 02 FRANCE},
author = {Ivanovici, Oana},
journal = {Journées Équations aux dérivées partielles},
keywords = {Rayleigh whispering gallery modes; Dirichlet boundary condition},
language = {eng},
month = {6},
number = {3},
pages = {1-19},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Dispersive and Strichartz estimates for the wave equation in domains with boundary},
url = {http://eudml.org/doc/116377},
volume = {347},
year = {2010},
}
TY - JOUR
AU - Ivanovici, Oana
TI - Dispersive and Strichartz estimates for the wave equation in domains with boundary
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 347
IS - 3
SP - 1
EP - 19
AB - In this note we consider a strictly convex domain $\Omega \subset \mathbb{R}^d$ of dimension $d\ge 2$ with smooth boundary $\partial \Omega \ne \emptyset$ and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.
LA - eng
KW - Rayleigh whispering gallery modes; Dirichlet boundary condition
UR - http://eudml.org/doc/116377
ER -
References
top- Matthew D. Blair, Hart F. Smith, Christopher D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire Zbl1198.58012MR2566711
- Nicolas Burq, Patrick Gérard, Nicolay Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605 Zbl1067.58027MR2058384
- Nicolas Burq, Gilles Lebeau, Fabrice Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc. 21 (2008), 831-845 Zbl1204.35119MR2393429
- E. B. Davies, The functional calculus, J. London Math. Soc. (2) 52 (1995), 166-176 Zbl0858.47012MR1345723
- Gregory Eskin, Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math. 32 (1977), 17-62 Zbl0375.35037MR477491
- J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994) 78 (1995), 153-160, Birkhäuser, Basel Zbl0839.35016MR1365328
- Daniel Grieser, bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA, (1992)
- Oana Ivanovici, Counter example to Strichartz estimates for the wave equation in domains, (2008) Zbl1201.35060
- Oana Ivanovici, Counterexamples to the Strichartz estimates for the wave equation in domains II, (2009) Zbl1201.35060MR2640046
- Oana Ivanovici, Fabrice Planchon, Square function and heat flow estimates on domains, (2008) Zbl1200.35066
- L. V. Kapitanskiĭ, Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz 1 (1989), 127-159 Zbl0732.35118MR1015129
- Markus Keel, Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980 Zbl0922.35028MR1646048
- Gilles Lebeau, Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006) (2006)
- Hans Lindblad, Christopher D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426 Zbl0846.35085MR1335386
- Francis Nier, A variational formulation of Schrödinger-Poisson systems in dimension , Comm. Partial Differential Equations 18 (1993), 1125-1147 Zbl0785.35086MR1233187
- A.N. Oraevsky, Whispering-gallery waves, Quantum Electronics 32 (2002), 377-400
- Hart F. Smith, A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797-835 Zbl0974.35068MR1644105
- Hart F. Smith, Christopher D. Sogge, On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 (1995), 879-916 Zbl0860.35081MR1308407
- Hart F. Smith, Christopher D. Sogge, On the norm of spectral clusters for compact manifolds with boundary, Acta Math. 198 (2007), 107-153 Zbl1189.58017MR2316270
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714 Zbl0372.35001MR512086
- Daniel Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc. 15 (2002), 419-442 (electronic) Zbl0990.35027MR1887639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.