Power values of certain quadratic polynomials

Anthony Flatters[1]

  • [1] School of Mathematics University of East Anglia Norwich NR4 7TJ, UK

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 3, page 645-660
  • ISSN: 1246-7405

Abstract

top
In this article we compute the q th power values of the quadratic polynomials f [ x ] with negative squarefree discriminant such that q is coprime to the class number of the splitting field of f over . The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of q which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.

How to cite

top

Flatters, Anthony. "Power values of certain quadratic polynomials." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 645-660. <http://eudml.org/doc/116425>.

@article{Flatters2010,
abstract = {In this article we compute the $q$th power values of the quadratic polynomials $f\in \mathbb\{Z\}[x]$ with negative squarefree discriminant such that $q$ is coprime to the class number of the splitting field of $f$ over $\mathbb\{Q\}$. The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of $q$ which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.},
affiliation = {School of Mathematics University of East Anglia Norwich NR4 7TJ, UK},
author = {Flatters, Anthony},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Primitive divisor; Diophantine equation; Lucas sequence; primitive divisor; Sylvester sequence},
language = {eng},
number = {3},
pages = {645-660},
publisher = {Université Bordeaux 1},
title = {Power values of certain quadratic polynomials},
url = {http://eudml.org/doc/116425},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Flatters, Anthony
TI - Power values of certain quadratic polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 645
EP - 660
AB - In this article we compute the $q$th power values of the quadratic polynomials $f\in \mathbb{Z}[x]$ with negative squarefree discriminant such that $q$ is coprime to the class number of the splitting field of $f$ over $\mathbb{Q}$. The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of $q$ which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.
LA - eng
KW - Primitive divisor; Diophantine equation; Lucas sequence; primitive divisor; Sylvester sequence
UR - http://eudml.org/doc/116425
ER -

References

top
  1. M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux, 18 (2006), pp. 299–313. Zbl1139.11011MR2289425
  2. F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation x 2 + c = y n : a brief overview, Rev. Colombiana Mat., 40 (2006), pp. 31–37. Zbl1189.11019MR2286850
  3. S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation x 2 + q 2 k + 1 = y n , J. Number Theory, 95 (2002), pp. 95–100. Zbl1037.11021MR1916082
  4. S. A. Arif and A. S. Al-Ali, On the Diophantine equation x 2 + p 2 k + 1 = 4 y n , Int. J. Math. Math. Sci., 31 (2002), pp. 695–699. Zbl1064.11029MR1928911
  5. A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc., 65 (1969), pp. 439–444. Zbl0174.33803MR234912
  6. M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. (3), 92 (2006), pp. 273–306. Zbl1178.11033MR2205718
  7. M. A. Bennett, K. Győry, M. Mignotte, and Á. Pintér, Binomial Thue equations and polynomial powers, Compos. Math., 142 (2006), pp. 1103–1121. Zbl1126.11018MR2264658
  8. A. Bérczes, B. Brindza, and L. Hajdu, On the power values of polynomials, Publ. Math. Debrecen, 53 (1998), pp. 375–381. Zbl0911.11019MR1657483
  9. Y. Bilu, On Le’s and Bugeaud’s papers about the equation a x 2 + b 2 m - 1 = 4 c p , Monatsh. Math., 137 (2002), pp. 1–3. Zbl1012.11023MR1930991
  10. Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), pp. 75–122. With an appendix by M. Mignotte. Zbl0995.11010MR1863855
  11. Y. F. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker’s method, Compositio Math., 112 (1998), pp. 273–312. Zbl0915.11065MR1631771
  12. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), pp. 235–265. Computational algebra and number theory (London, 1993). Zbl0898.68039MR1484478
  13. B. Brindza, On S -integral solutions of the equation y m = f ( x ) , Acta Math. Hungar., 44 (1984), pp. 133–139. Zbl0552.10009MR759041
  14. B. Brindza, J.-H. Evertse, and K. Győry, Bounds for the solutions of some Diophantine equations in terms of discriminants, J. Austral. Math. Soc. Ser. A, 51 (1991), pp. 8–26. Zbl0746.11018MR1119684
  15. Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math., 107 (1997), pp. 187–219. Zbl0886.11016MR1458749
  16. Y. Bugeaud, On some exponential Diophantine equations, Monatsh. Math., 132 (2001), pp. 93–97. Zbl1014.11023MR1838399
  17. Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163 (2006), pp. 969–1018. Zbl1113.11021MR2215137
  18. H. Cohen, Pari-gp. www.parigp-home.de. 
  19. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), pp. 537–540. Zbl0127.26705MR163867
  20. A. Flatters, Arithmetic properties of recurrence sequences, PhD thesis, University of East Anglia, 2010. Zbl1236.11018
  21. S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly, 70 (1963), pp. 403–405. Zbl0139.26705MR148605
  22. K. Győry, L. Hajdu, and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math., 145 (2009), pp. 845–864. Zbl1194.11043MR2521247
  23. K. Győry, I. Pink, and A. Pintér, Power values of polynomials and binomial Thue-Mahler equations, Publ. Math. Debrecen, 65 (2004), pp. 341–362. Zbl1064.11025MR2107952
  24. K. Györy and Á. Pintér, Almost perfect powers in products of consecutive integers, Monatsh. Math., 145 (2005), pp. 19–33. Zbl1096.11014MR2134477
  25. K. Győry and Á. Pintér, On the resolution of equations A x n - B y n = C in integers x , y and n 3 . I, Publ. Math. Debrecen, 70 (2007), pp. 483–501. Zbl1127.11024MR2310662
  26. K. Győry and Á. Pintér, Polynomial powers and a common generalization of binomial Thue-Mahler equations and S -unit equations, in Diophantine equations, vol. 20 of Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2008, pp. 103–119. Zbl1238.11042MR1500221
  27. V. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation x m = y 2 + 1 , Nouv. Ann. Math., 9 (1850), pp. 178–181. 
  28. S. P. Mohanty, The number of primes is infinite, Fibonacci Quart., 16 (1978), pp. 381–384. Zbl0393.10004MR514325
  29. A. Pethő, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen, 30 (1983), pp. 117–127. Zbl0549.10007MR733078
  30. D. Poulakis, Solutions entières de l’équation Y m = f ( X ) , Sém. Théor. Nombres Bordeaux (2), 3 (1991), pp. 187–199. Zbl0733.11009
  31. A. Schinzel and R. Tijdeman, On the equation y m = P ( x ) , Acta Arith., 31 (1976), pp. 199–204. Zbl0339.10018MR422150
  32. T. N. Shorey and C. L. Stewart, On the Diophantine equation a x 2 t + b x t y + c y 2 = d and pure powers in recurrence sequences, Math. Scand., 52 (1983), pp. 24–36. Zbl0491.10016MR697495
  33. T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory, 27 (1987), pp. 324–352. Zbl0624.10009MR915504
  34. T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986. Zbl0606.10011MR891406
  35. C. L. Siegel, The integer solutions of the equation y 2 = a x n + b x n - 1 + + k ., Journal L. M. S., 1 (1926), pp. 66–68. Zbl52.0149.02
  36. N. Sloane, Online encyclopedia of integer sequences. www.research.att.com/~njas/sequences. Zbl1274.11001
  37. V. G. Sprindžuk, The arithmetic structure of integer polynomials and class numbers, Trudy Mat. Inst. Steklov., 143 (1977), pp. 152–174, 210. Analytic number theory, mathematical analysis and their applications (dedicated to I. M. Vinogradov on his 85th birthday). Zbl0439.12006MR480426
  38. R. Tijdeman, Applications of the Gelʼfond-Baker method to rational number theory, in Topics in number theory (Proc. Colloq., Debrecen, 1974), North-Holland, Amsterdam, 1976, pp. 399–416. Colloq. Math. Soc. János Bolyai, Vol. 13. Zbl0335.10022MR560494
  39. P. M. Voutier, An upper bound for the size of integral solutions to Y m = f ( X ) , J. Number Theory, 53 (1995), pp. 247–271. Zbl0842.11008MR1348763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.