Power values of certain quadratic polynomials
- [1] School of Mathematics University of East Anglia Norwich NR4 7TJ, UK
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 645-660
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFlatters, Anthony. "Power values of certain quadratic polynomials." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 645-660. <http://eudml.org/doc/116425>.
@article{Flatters2010,
abstract = {In this article we compute the $q$th power values of the quadratic polynomials $f\in \mathbb\{Z\}[x]$ with negative squarefree discriminant such that $q$ is coprime to the class number of the splitting field of $f$ over $\mathbb\{Q\}$. The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of $q$ which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.},
affiliation = {School of Mathematics University of East Anglia Norwich NR4 7TJ, UK},
author = {Flatters, Anthony},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Primitive divisor; Diophantine equation; Lucas sequence; primitive divisor; Sylvester sequence},
language = {eng},
number = {3},
pages = {645-660},
publisher = {Université Bordeaux 1},
title = {Power values of certain quadratic polynomials},
url = {http://eudml.org/doc/116425},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Flatters, Anthony
TI - Power values of certain quadratic polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 645
EP - 660
AB - In this article we compute the $q$th power values of the quadratic polynomials $f\in \mathbb{Z}[x]$ with negative squarefree discriminant such that $q$ is coprime to the class number of the splitting field of $f$ over $\mathbb{Q}$. The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of $q$ which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.
LA - eng
KW - Primitive divisor; Diophantine equation; Lucas sequence; primitive divisor; Sylvester sequence
UR - http://eudml.org/doc/116425
ER -
References
top- M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux, 18 (2006), pp. 299–313. Zbl1139.11011MR2289425
- F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation : a brief overview, Rev. Colombiana Mat., 40 (2006), pp. 31–37. Zbl1189.11019MR2286850
- S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation , J. Number Theory, 95 (2002), pp. 95–100. Zbl1037.11021MR1916082
- S. A. Arif and A. S. Al-Ali, On the Diophantine equation , Int. J. Math. Math. Sci., 31 (2002), pp. 695–699. Zbl1064.11029MR1928911
- A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc., 65 (1969), pp. 439–444. Zbl0174.33803MR234912
- M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. (3), 92 (2006), pp. 273–306. Zbl1178.11033MR2205718
- M. A. Bennett, K. Győry, M. Mignotte, and Á. Pintér, Binomial Thue equations and polynomial powers, Compos. Math., 142 (2006), pp. 1103–1121. Zbl1126.11018MR2264658
- A. Bérczes, B. Brindza, and L. Hajdu, On the power values of polynomials, Publ. Math. Debrecen, 53 (1998), pp. 375–381. Zbl0911.11019MR1657483
- Y. Bilu, On Le’s and Bugeaud’s papers about the equation , Monatsh. Math., 137 (2002), pp. 1–3. Zbl1012.11023MR1930991
- Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), pp. 75–122. With an appendix by M. Mignotte. Zbl0995.11010MR1863855
- Y. F. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker’s method, Compositio Math., 112 (1998), pp. 273–312. Zbl0915.11065MR1631771
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), pp. 235–265. Computational algebra and number theory (London, 1993). Zbl0898.68039MR1484478
- B. Brindza, On -integral solutions of the equation , Acta Math. Hungar., 44 (1984), pp. 133–139. Zbl0552.10009MR759041
- B. Brindza, J.-H. Evertse, and K. Győry, Bounds for the solutions of some Diophantine equations in terms of discriminants, J. Austral. Math. Soc. Ser. A, 51 (1991), pp. 8–26. Zbl0746.11018MR1119684
- Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math., 107 (1997), pp. 187–219. Zbl0886.11016MR1458749
- Y. Bugeaud, On some exponential Diophantine equations, Monatsh. Math., 132 (2001), pp. 93–97. Zbl1014.11023MR1838399
- Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163 (2006), pp. 969–1018. Zbl1113.11021MR2215137
- H. Cohen, Pari-gp. www.parigp-home.de.
- J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), pp. 537–540. Zbl0127.26705MR163867
- A. Flatters, Arithmetic properties of recurrence sequences, PhD thesis, University of East Anglia, 2010. Zbl1236.11018
- S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly, 70 (1963), pp. 403–405. Zbl0139.26705MR148605
- K. Győry, L. Hajdu, and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math., 145 (2009), pp. 845–864. Zbl1194.11043MR2521247
- K. Győry, I. Pink, and A. Pintér, Power values of polynomials and binomial Thue-Mahler equations, Publ. Math. Debrecen, 65 (2004), pp. 341–362. Zbl1064.11025MR2107952
- K. Györy and Á. Pintér, Almost perfect powers in products of consecutive integers, Monatsh. Math., 145 (2005), pp. 19–33. Zbl1096.11014MR2134477
- K. Győry and Á. Pintér, On the resolution of equations in integers and . I, Publ. Math. Debrecen, 70 (2007), pp. 483–501. Zbl1127.11024MR2310662
- K. Győry and Á. Pintér, Polynomial powers and a common generalization of binomial Thue-Mahler equations and -unit equations, in Diophantine equations, vol. 20 of Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2008, pp. 103–119. Zbl1238.11042MR1500221
- V. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation , Nouv. Ann. Math., 9 (1850), pp. 178–181.
- S. P. Mohanty, The number of primes is infinite, Fibonacci Quart., 16 (1978), pp. 381–384. Zbl0393.10004MR514325
- A. Pethő, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen, 30 (1983), pp. 117–127. Zbl0549.10007MR733078
- D. Poulakis, Solutions entières de l’équation , Sém. Théor. Nombres Bordeaux (2), 3 (1991), pp. 187–199. Zbl0733.11009
- A. Schinzel and R. Tijdeman, On the equation , Acta Arith., 31 (1976), pp. 199–204. Zbl0339.10018MR422150
- T. N. Shorey and C. L. Stewart, On the Diophantine equation and pure powers in recurrence sequences, Math. Scand., 52 (1983), pp. 24–36. Zbl0491.10016MR697495
- T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory, 27 (1987), pp. 324–352. Zbl0624.10009MR915504
- T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986. Zbl0606.10011MR891406
- C. L. Siegel, The integer solutions of the equation ., Journal L. M. S., 1 (1926), pp. 66–68. Zbl52.0149.02
- N. Sloane, Online encyclopedia of integer sequences. www.research.att.com/~njas/sequences. Zbl1274.11001
- V. G. Sprindžuk, The arithmetic structure of integer polynomials and class numbers, Trudy Mat. Inst. Steklov., 143 (1977), pp. 152–174, 210. Analytic number theory, mathematical analysis and their applications (dedicated to I. M. Vinogradov on his 85th birthday). Zbl0439.12006MR480426
- R. Tijdeman, Applications of the Gelʼfond-Baker method to rational number theory, in Topics in number theory (Proc. Colloq., Debrecen, 1974), North-Holland, Amsterdam, 1976, pp. 399–416. Colloq. Math. Soc. János Bolyai, Vol. 13. Zbl0335.10022MR560494
- P. M. Voutier, An upper bound for the size of integral solutions to , J. Number Theory, 53 (1995), pp. 247–271. Zbl0842.11008MR1348763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.