The interface crack with Coulomb friction between two bonded dissimilar elastic media
Hiromichi Itou; Victor A. Kovtunenko; Atusi Tani
Applications of Mathematics (2011)
- Volume: 56, Issue: 1, page 69-97
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topItou, Hiromichi, Kovtunenko, Victor A., and Tani, Atusi. "The interface crack with Coulomb friction between two bonded dissimilar elastic media." Applications of Mathematics 56.1 (2011): 69-97. <http://eudml.org/doc/116505>.
@article{Itou2011,
abstract = {We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.},
author = {Itou, Hiromichi, Kovtunenko, Victor A., Tani, Atusi},
journal = {Applications of Mathematics},
keywords = {linearized elasticity; singularities at the crack tip; interfacial crack; non-penetration condition; Coulomb friction; linearized elasticity; singularity at the crack tip; interfacial crack; non-penetration condition; Coulomb friction},
language = {eng},
number = {1},
pages = {69-97},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The interface crack with Coulomb friction between two bonded dissimilar elastic media},
url = {http://eudml.org/doc/116505},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Itou, Hiromichi
AU - Kovtunenko, Victor A.
AU - Tani, Atusi
TI - The interface crack with Coulomb friction between two bonded dissimilar elastic media
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 69
EP - 97
AB - We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.
LA - eng
KW - linearized elasticity; singularities at the crack tip; interfacial crack; non-penetration condition; Coulomb friction; linearized elasticity; singularity at the crack tip; interfacial crack; non-penetration condition; Coulomb friction
UR - http://eudml.org/doc/116505
ER -
References
top- Andersson, L.-E., 10.1007/s002450010009, Appl. Math. Optim. 42 (2000), 169-202. (2000) Zbl0972.35058MR1784173DOI10.1007/s002450010009
- Audoly, B., 10.1016/S0022-5096(99)00098-8, J. Mech. Phys. Solids 48 (2000), 1851-1864. (2000) Zbl0963.74048DOI10.1016/S0022-5096(99)00098-8
- Bach, M., Khludnev, A. M., Kovtunenko, V. A., 10.1002/(SICI)1099-1476(200004)23:6<515::AID-MMA122>3.0.CO;2-S, Math. Methods Appl. Sci. 23 (2000), 515-534. (2000) Zbl0954.35076MR1748320DOI10.1002/(SICI)1099-1476(200004)23:6<515::AID-MMA122>3.0.CO;2-S
- Bui, H. D., Oueslati, A., 10.1016/j.jmps.2004.12.007, J. Mech. Phys. Solids 53 (2005), 1397-1421. (2005) Zbl1120.74744MR2137068DOI10.1016/j.jmps.2004.12.007
- Comninou, M., 10.1016/0013-7944(90)90343-F, Eng. Fract. Mech. 37 (1990), 197-208. (1990) DOI10.1016/0013-7944(90)90343-F
- Comninou, M., Dundurs, J., 10.1007/BF00044504, J. Elasticity 10 (1980), 203-212. (1980) Zbl0457.73098MR0576168DOI10.1007/BF00044504
- Dundurs, J., Comninou, M., 10.1007/BF00040981, J. Elasticity 9 (1979), 71-82. (1979) Zbl0393.73117DOI10.1007/BF00040981
- Eck, Ch., Jarušek, J., Krbec, M., Unilateral Contact Problems, Chapman&Hall/CRC Boca Raton (2005). (2005) Zbl1079.74003MR2128865
- England, A. H., Complex Variable Methods in Elasticity, John Wiley & Sons London (1971). (1971) Zbl0222.73017MR0464824
- Fichera, G., Existence theorems in elasticity, Mechanics of Solids Vol. II C. Truesdell Springer Berlin (1984), 347-389. (1984)
- Haslinger, J., Kučera, J., Vlach, O., 10.1007/978-3-540-69777-0_97, Num. Math. Adv. Appl. K. Kunisch, G. Of, O. Steinbach Springer Berlin (2008), 811-818. (2008) Zbl1155.74032MR3615958DOI10.1007/978-3-540-69777-0_97
- Hild, P., 10.1093/qjmam/57.2.225, Q. J. Mech. Appl. Math. 57 (2004), 225-235. (2004) Zbl1059.74042MR2068404DOI10.1093/qjmam/57.2.225
- Hintermüller, M., Kovtunenko, V. A., Kunisch, K., Obstacle problems with cohesion: A hemi-variational inequality approach and its efficient numerical solution, MATHEON Report 687 DFG-Forschungszentrum, TU-Berlin Berlin (2010). (2010) MR2817476
- Hüeber, S., Stadler, G., Wohlmuth, B. I., 10.1137/060671061, SIAM J. Sci. Comput. 30 (2008), 572-596. (2008) Zbl1158.74045MR2385876DOI10.1137/060671061
- Ikehata, M., Itou, H., 10.1088/0266-5611/23/2/008, Inverse Probl. 23 (2007), 589-607. (2007) Zbl1115.35149MR2309665DOI10.1088/0266-5611/23/2/008
- Ikehata, M., Itou, H., Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data. Article ID 105005, Inverse Probl. 25 (2009), 1-21. (2009) MR2545974
- Itou, H., Tani, A., 10.1023/A:1021903404039, J. Elasticity 66 (2002), 193-206. (2002) Zbl1018.74033MR1956323DOI10.1023/A:1021903404039
- Kato, Y., 10.1007/BF03167776, Japan J. Appl. Math. 4 (1987), 237-268. (1987) Zbl0627.73098MR0899912DOI10.1007/BF03167776
- Khludnev, A. M., Kovtunenko, V. A., Analysis of Cracks in Solids, WIT-Press Southampton, Boston (2000). (2000)
- Khludnev, A. M., Kovtunenko, V. A., Tani, A., 10.2969/jmsj/06041219, J. Math. Soc. Japan 60 (2008), 1219-1253. (2008) Zbl1153.49040MR2467876DOI10.2969/jmsj/06041219
- Khludnev, A. M., Kovtunenko, V. A., Tani, A., 10.1016/j.matpur.2010.06.002, J. Math. Pures Appl. 94 (2010), 571-596. (2010) Zbl1203.49035MR2737389DOI10.1016/j.matpur.2010.06.002
- Khludnev, A. M., Kozlov, V. A., 10.1007/s00033-007-6032-z, Z. Angew. Math. Phys. 59 (2008), 264-280. (2008) Zbl1138.74043MR2400558DOI10.1007/s00033-007-6032-z
- Kikuchi, N., Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Philadelphia (1988). (1988) Zbl0685.73002MR0961258
- Kovtunenko, V. A., 10.1023/A:1022319428441, Appl. Math. 45 (2000), 265-290. (2000) Zbl1058.74064MR1763172DOI10.1023/A:1022319428441
- Kravchuk, A. S., Variational and Quasivariational Inequations in Mechanics, MGAPI Moscow (1997), Russian. (1997)
- Maz'ya, V., Nazarov, S., Plamenevskii, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II, Birkhäuser Basel (2000). (2000) Zbl1127.35301MR1779978
- Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff Groningen (1963). (1963) Zbl0124.17404MR0176648
- Nečas, J., Jarušek, J., Haslinger, J., On the solution of the variational inequality to the Signorini problem with small friction, Boll. Unione Mat. Ital. 17-B (1980), 796-811. (1980) MR0580559
- Renard, Y., 10.1137/050635936, SIAM J. Math. Anal. 38 (2006), 452-467. (2006) Zbl1194.74225MR2237156DOI10.1137/050635936
- Rice, J. R., 10.1115/1.3173668, J. Appl. Mech. 55 (1988), 98-103. (1988) DOI10.1115/1.3173668
- Shillor, M., Sofonea, M., Telega, J., Models and Analysis of Quasistatic Contact, Springer Berlin (2004). (2004) Zbl1069.74001
- Toupin, R. A., 10.1007/BF00282253, Arch. Ration. Mech. Anal. 18 (1965), 83-96. (1965) Zbl0203.26803MR0172506DOI10.1007/BF00282253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.