On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti; Edoardo Bucchignani

Applications of Mathematics (2011)

  • Volume: 56, Issue: 1, page 117-136
  • ISSN: 0862-7940

Abstract

top
We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the balance of the momentum of the system influences significantly the numerical solution and is necessary in order to get a better match with the experimental observations. Here an up-to-date list of the most meaningful mathematical models and numerical simulations of this test is discussed and the need is shown of an accurate revision of the numerical simulations of melting/solidification processes of pure materials (e.g. artificial crystal growth) produced in the last thirty years and not accounting for the solid phase mechanics.

How to cite

top

Mansutti, Daniela, and Bucchignani, Edoardo. "On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials." Applications of Mathematics 56.1 (2011): 117-136. <http://eudml.org/doc/116507>.

@article{Mansutti2011,
abstract = {We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the balance of the momentum of the system influences significantly the numerical solution and is necessary in order to get a better match with the experimental observations. Here an up-to-date list of the most meaningful mathematical models and numerical simulations of this test is discussed and the need is shown of an accurate revision of the numerical simulations of melting/solidification processes of pure materials (e.g. artificial crystal growth) produced in the last thirty years and not accounting for the solid phase mechanics.},
author = {Mansutti, Daniela, Bucchignani, Edoardo},
journal = {Applications of Mathematics},
keywords = {liquid/solid phase change; deformation; convection; numerical simulation; finite differences; liquid/solid phase change; deformation; convection; numerical simulation; finite difference},
language = {eng},
number = {1},
pages = {117-136},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials},
url = {http://eudml.org/doc/116507},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Mansutti, Daniela
AU - Bucchignani, Edoardo
TI - On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 117
EP - 136
AB - We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the balance of the momentum of the system influences significantly the numerical solution and is necessary in order to get a better match with the experimental observations. Here an up-to-date list of the most meaningful mathematical models and numerical simulations of this test is discussed and the need is shown of an accurate revision of the numerical simulations of melting/solidification processes of pure materials (e.g. artificial crystal growth) produced in the last thirty years and not accounting for the solid phase mechanics.
LA - eng
KW - liquid/solid phase change; deformation; convection; numerical simulation; finite differences; liquid/solid phase change; deformation; convection; numerical simulation; finite difference
UR - http://eudml.org/doc/116507
ER -

References

top
  1. Apostol, T. M., Calculus. Vol. II: Multi-variable calculus and linear algebra, with applications to differential equations and probability. 2nd ed, Blaisdell Publishing Company Waltham (1969). (1969) Zbl0185.11402MR0248290
  2. Bailey, C., Chow, P., Cross, M., Freyer, Y., Pericleous, K., Multiphysics modelling of the metals casting process, Proc. R. Soc. Lond. A. 452 (1996), 459-486. (1996) 
  3. Baldoni, F., Thermomechanics of Solidification, Pittsburgh University Press Pittsburgh (1997). (1997) Zbl0945.74521
  4. Bansch, E., Smith, A., 10.4171/IFB/14, Interfaces and Free Boundaries 2 (2000), 95-115. (2000) MR1759501DOI10.4171/IFB/14
  5. O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quere, M. Medale, J. Mercinger, H. Sadat, G. Vieira, 10.1016/S0035-3159(99)80013-0, Int. J. Therm. Sci. 38 (1999), 5-26. (1999) DOI10.1016/S0035-3159(99)80013-0
  6. Brent, A. D., Volle, V. R., Reid, K. J., 10.1080/10407788808913615, Numer. Heat Transfer 13 (1988), 297-318. (1988) DOI10.1080/10407788808913615
  7. Cerimele, M. M., Mansutti, D., Pistella, F., A front-fixing method for flows in liquid/solid phase change with a benchmark test, CD-Rom Proceedings of ECCOMAS 2000, Barcelona, September 11-14, 2000. 
  8. Chalmers, B., Principles of Solidification, J. Wiley & Sons New York (1964). (1964) 
  9. Chen, P. Y. P., Timchenko, V., Leonardi, E., Davis, G. de Vahl, III, H. C. de Groh, A numerical study of directional solidification and melting in microgravity, Proceedings of the ASME, Heat Transfer Division Vol. 3 (1998), 75-83. (1998) 
  10. Chiesa, F. M., Guthie, R. I. L., Natural convection heat transfer rate during the solidification and melting of metals and alloy systems, J. Heat Transfer 99 (1977), 520-526. (1977) 
  11. Costanza, G., Gauzzi, F., Montanari, R., 10.1111/j.1749-6632.2002.tb05897.x, Ann. New York Acad. Sci. 974 (2002), 68-78. (2002) DOI10.1111/j.1749-6632.2002.tb05897.x
  12. Crank, J., Free and Moving Boundary Problems. Oxford Science Publication, Clarendon Press Oxford (1984). (1984) MR0776227
  13. Cross, M., Bailey, C., Pericleous, K., Williams, A., Bojarevics, V., Croft, N., Taylor, G., The multiphysics modeling of solidification and melting processes, JOM-e 54 (2002). (2002) 
  14. Dantzig, J., 10.1002/nme.1620280805, Int. J. Numer. Methods Eng. 28 (1989), 1769-1785. (1989) MR1008137DOI10.1002/nme.1620280805
  15. Fabritiis, G. De, Mancini, A., Mansutti, D., Succi, S., 10.1142/S0129183198001278, Int. J. Modern Physics C. 9 (1998), 1405-1415. (1998) DOI10.1142/S0129183198001278
  16. III, H. C. de Groh, Lindstrom, T., Interface shape and convection during solidification and melting of succinonitrile, NASA Technical Memorandum 106487 (1994). (1994) 
  17. Derebail, R., Koster, J. N., 10.1016/0017-9310(96)00044-0, Int. J. Heat Mass Transfer 40 (1997), 1169-1180. (1997) Zbl0925.76643DOI10.1016/0017-9310(96)00044-0
  18. Davis, G. De Vahl, Hanjalic, K., Quere, P. Le, Bontoux, P., Progress in Computational Heat and Mass Transfer. Proc 4th Int. Conf. Comput. Heat Mass Transfer, May 17-20, 2005, Paris, Lavoisier Paris (2005). (2005) 
  19. Drazin, P. G., Reid, W. H., Hydrodynamic Stability, Cambridge University Press Cambridge (1985). (1985) 
  20. Epstein, M., Cheung, F. B., 10.1146/annurev.fl.15.010183.001453, Ann. Rev. Fluid Mech. 15 (1983), 293-319. (1983) DOI10.1146/annurev.fl.15.010183.001453
  21. Gadkari, D. B., Shashidharan, P., Lal, K. B., Arora, B. M., 10.1007/BF02706718, Bull. Mater. Sci. 24 (2001), 475-482. (2001) DOI10.1007/BF02706718
  22. Gau, C., Viskanta, R., 10.1016/0017-9310(84)90243-6, Int. J. Heat Mass Transfer 27 (1984), 113-123. (1984) DOI10.1016/0017-9310(84)90243-6
  23. Gau, C., Viskanta, R., 10.1115/1.3246884, Transaction of the ASME 108 (1986), 174-181. (1986) DOI10.1115/1.3246884
  24. Golub, G., Loan, C. van, Matrix Computations, The Johns Hopkins University Press Baltimore (1989). (1989) MR1002570
  25. Gondi, P., Montanari, R., Evangelista, E., Buroni, G., X-ray study of structures of liquid metals with controlled convective motions, Microgravity Quarterly 7 (1997), 155-173. (1997) 
  26. Hannoun, N., Alexiades, V., Mai, T. Z., Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side, Numerical Heat Transfer, Part B 44 (2003), 253-276. (2003) 
  27. Hannoun, N., Alexiades, V., Mai, T. Z., 10.1002/fld.979, Int. J. Numer. Methods Fluids 48 (2005), 1283-1308. (2005) Zbl1112.76402MR2153612DOI10.1002/fld.979
  28. Hills, R. N., Roberts, P. H., 10.1016/0020-7462(90)90022-2, Int. J. Non-Linear Mech. 25 (1990), 319-329. (1990) Zbl0711.76092DOI10.1016/0020-7462(90)90022-2
  29. Hirasaki, G. J., Hellums, J. D., 10.1090/qam/99793, Q. Appl. Math. 28 (1970), 293-296. (1970) Zbl0229.76031DOI10.1090/qam/99793
  30. Hoger, A., Johnson, B. E., 10.1007/BF00121464, J. Elasticity 38 (1995), 69-93. (1995) Zbl0824.73007MR1323555DOI10.1007/BF00121464
  31. Hunter, S. C., Mechanics of Continuous Media, Ellis Horwood Limited Chichester (1976). (1976) Zbl0385.73002MR0445984
  32. Hurle, D. T. J., 10.1016/0022-0248(83)90045-3, J. Crystal Growth 65 (1983), 124-132. (1983) DOI10.1016/0022-0248(83)90045-3
  33. Huppert, H. E., 10.1017/S0022112090001938, J Fluid Mech. 212 (1990), 209-240. (1990) MR1051332DOI10.1017/S0022112090001938
  34. Kang, K., Ryou, H., 10.1080/10407790490438563, Numer. Heat Transfer, Part B 46 (2004), 179-194. (2004) DOI10.1080/10407790490438563
  35. Kim, S., Anghaie, S., Chen, G., 10.2514/2.6734, J. Thermophysics and Heat Transfer 17 (2003), 62-68. (2003) DOI10.2514/2.6734
  36. Kumar, V., Durst, F., Ray, S., 10.1080/10407790500379981, Numer. Heat Transfer, Part B 49 (2006), 299-331. (2006) DOI10.1080/10407790500379981
  37. Lamazouade, A., Ganaoui, M. El, Morvan, D., Bontoux, P., 10.1016/S0035-3159(99)80085-3, Revue Generale de Thermique 38 (1999), 674-683. (1999) DOI10.1016/S0035-3159(99)80085-3
  38. Lee, Y., Korpela, S. A., 10.1017/S0022112083000063, J. Fluid Mech. 126 (1983), 91-121. (1983) Zbl0533.76088DOI10.1017/S0022112083000063
  39. Quere, P. Le, Gobin, D., 10.1016/S0035-3159(99)80039-7, Int. J. Thermal Sci. 38 (1999), 595-600. (1999) DOI10.1016/S0035-3159(99)80039-7
  40. Mansutti, D., Graziani, G., Piva, R., 10.1016/0021-9991(91)90296-W, J. Comput. Phys. 92 (1991), 161-184. (1991) Zbl0712.76038DOI10.1016/0021-9991(91)90296-W
  41. Mansutti, D., Baldoni, F., Rajagopal, K. R., 10.1142/S0218202501000891, Math. Models Methods Appl. Sci. 11 (2001), 367-386. (2001) MR1820678DOI10.1142/S0218202501000891
  42. Mansutti, D., Raffo, R., Santi, R., Liquid/Solid phase change with convection and deformations: 2D case, Progress in Industrial Mathematics at ECMI Mathematics in Industry Vol. 8, 2004 A. Di Bucchianico, R. M. M. Mattheij, M. A. Peletier Springer Berlin (2006), 268-272. (2006) Zbl1309.80003MR2228611
  43. Miller, W., Succi, S., Mansutti, D., 10.1103/PhysRevLett.86.3578, Phys. Rev. Lett. 86 (2001), 3578-3581. (2001) DOI10.1103/PhysRevLett.86.3578
  44. Rady, M. A., Mohanty, A. K., 10.1080/10407789608913778, Numer. Heat Transfer, Part A 29 (1996), 49-63. (1996) DOI10.1080/10407789608913778
  45. Sampath, R., Zabaras, N., 10.1002/(SICI)1097-0207(19990330)44:9<1227::AID-NME471>3.0.CO;2-R, Int. J. Numer. Methods Eng. 44 (1999), 1227-1265. (1999) Zbl0943.76052DOI10.1002/(SICI)1097-0207(19990330)44:9<1227::AID-NME471>3.0.CO;2-R
  46. Slattery, J. C., Momentum, Energy and Mass Transfer in Continua, McGraw-Hill New York (1972). (1972) 
  47. Song, R., Dhatt, G., Cheikh, A. Ben, 10.1002/nme.1620300403, Int. J. Numer. Methods Eng. 30 (1990), 579-599. (1990) DOI10.1002/nme.1620300403
  48. Stella, F., Giangi, M., 10.1080/10407780050135405, Numer. Heat Transfer, Part A 38 (2000), 193-208. (2000) DOI10.1080/10407780050135405
  49. Stefan, J., Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Sitzungsberichte der "Osterreichischen Akademie der Wissenschaften Mathematisch-Naturwissen-schaftliche Klasse, Abteilung 2, Mathematik, Astronomie, Physik, Meteorologie und Technik 98 (1988), 965-983 German. (1988) 
  50. Szekely, J., Chambra, P. S., 10.1007/BF02900231, Met. Trans. B1 (1970), 1195-1203. (1970) DOI10.1007/BF02900231
  51. Tenchev, R. T., Mackenzie, J. A., Scanlon, T. J., Stickland, M. T., 10.1016/j.ijheatfluidflow.2005.03.003, Int. J. Heat Fluid Flow 26 (2005), 597-612. (2005) DOI10.1016/j.ijheatfluidflow.2005.03.003
  52. Teskeredzic, A., Demirdzic, I., Muzaferija, S., 10.1080/10407790190054021, Numer. Heat Transfer, Part B 42 (2002), 437-459. (2002) DOI10.1080/10407790190054021
  53. Truesdell, C., Rajagopal, K. R., An Introduction to the Mechanics of Fluids, Birkhäuser Boston (2000). (2000) Zbl0942.76001MR1731441
  54. Vorst, H. Van der, 10.1137/0913035, SIAM J. Sci. Stat. Comput. 13 (1992), 631-644. (1992) MR1149111DOI10.1137/0913035
  55. Viswanath, R., Jaluria, Y., 10.1080/10407799308955883, Numer. Heat Transfer, Part B. 24 (1993), 77-105. (1993) DOI10.1080/10407799308955883
  56. Voller, V. R., Cross, M., Markatos, N., 10.1002/nme.1620240119, Int. J. Numer. Methods Eng. 24 (1987), 271-284. (1987) Zbl0609.76104DOI10.1002/nme.1620240119
  57. Voller, V. R., An overview of numerical methods for solving phase change problems: a review, Adv. Numer. Heat Transfer W. J. Minkowycz, E. M. Sparrow Taylor & Francis Philadelphia (1997). (1997) 
  58. Yeoh, G. H., Davis, G. de Vahl, Leonardi, E., III, H. C. de Groh, Yao, M., 10.1016/S0022-0248(96)00851-2, J. Crystal Growth 173 (1997), 492-502. (1997) DOI10.1016/S0022-0248(96)00851-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.