Hereditary and cohereditary preradicals

Ladislav Bican; Pavel Jambor; Tomáš Kepka; Petr Němec

Czechoslovak Mathematical Journal (1976)

  • Volume: 26, Issue: 2, page 192-206
  • ISSN: 0011-4642

How to cite

top

Bican, Ladislav, et al. "Hereditary and cohereditary preradicals." Czechoslovak Mathematical Journal 26.2 (1976): 192-206. <http://eudml.org/doc/12930>.

@article{Bican1976,
author = {Bican, Ladislav, Jambor, Pavel, Kepka, Tomáš, Němec, Petr},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {2},
pages = {192-206},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hereditary and cohereditary preradicals},
url = {http://eudml.org/doc/12930},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Bican, Ladislav
AU - Jambor, Pavel
AU - Kepka, Tomáš
AU - Němec, Petr
TI - Hereditary and cohereditary preradicals
JO - Czechoslovak Mathematical Journal
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 2
SP - 192
EP - 206
LA - eng
UR - http://eudml.org/doc/12930
ER -

References

top
  1. H. Bass, 10.1090/S0002-9947-1960-0157984-8, Trans. Amer. Math. Soc. 95 (1960), 466-488. (1960) Zbl0094.02201MR0157984DOI10.1090/S0002-9947-1960-0157984-8
  2. J. A. Beachy, 10.1017/S0004972700047122, Bull. Austral. Math. Soc. 5 (1971), 241-253. (1971) Zbl0218.16009MR0292879DOI10.1017/S0004972700047122
  3. L. Bican, QF-3'modules and rings, Comment. Math. Univ. Carol. 14 (1973), 295-303. (1973) Zbl0259.16005MR0401825
  4. L. Bican, Corational extensions and pseudo-projective modules, (to appear). Zbl0339.16006MR0424870
  5. L. Bican P. Jambor T. Kepka P. Němec, 10.1017/S0004972700043173, Bull. Austral. Math. Soc. 9 (1973), 275-290. (1973) MR0330206DOI10.1017/S0004972700043173
  6. L. Bican P. Jambor T. Kepka P. Němec, Preradicals, Commemt. Math. Univ. Carol. 15 (1974), 75-83. (1974) MR0347906
  7. L. Bican P. Jambor T. Kepka P. Němec, Stable and costable preradicals, Acta Univ. Carolinae Math. et Phys. 16, 2 (1975), 63-69. (1975) MR0387333
  8. L. Bican P. Jambor T. Kepka P. Němec, Preradicals and change of rings, Comment. Math. Univ. Carol. 16(1975), 201-217. (1975) MR0374179
  9. S. E. Dickson, 10.1090/S0002-9947-1966-0191935-0, Trans. Amer. Math. Soc. 121 (1966), 223-235. (1966) Zbl0138.01801MR0191935DOI10.1090/S0002-9947-1966-0191935-0
  10. J. P. Jans, 10.2140/pjm.1965.15.1249, Pacif. J. Math. 15 (1965), 1249-1259. (1965) Zbl0142.28002MR0191936DOI10.2140/pjm.1965.15.1249
  11. A. P. Mišina L. A. Skornjakov, Abelevy gruppy i moduli, Nauka, Moskva, 1969. (1969) MR0276212
  12. R. A. Rubin, 10.1090/S0002-9904-1972-13060-X, Bull. Amer. Math. Soc. 78 (1972), 854-856. (1972) Zbl0266.16002MR0299635DOI10.1090/S0002-9904-1972-13060-X
  13. B. Stenström, Rings and modules of quotients, Lecture Notes in Mathematics 237, Springer Verlag, Berlin-Heidelberg-New York 1971. (1971) MR0325663

Citations in EuDML Documents

top
  1. Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, A note on test modules
  2. Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Composition of preradicals
  3. Hana Jirásková, Josef Jirásko, Generalized projectivity
  4. Josef Jirásko, Preradicals and generalizations of Q F - 3 ' modules. I.
  5. Josef Jirásko, Pseudohereditary and pseudocohereditary preradicals
  6. Josef Jirásko, Preradicals and generalizations of Q F - 3 ' modules. II.
  7. Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Pseudoprojective modules
  8. Ladislav Bican, Josef Jirásko, A general concept of the pseudoprojective module
  9. Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Generation of preradicals
  10. Josef Jirásko, Notes on generalized prime and coprime modules. II.

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.