Composition of preradicals
Ladislav Bican; Pavel Jambor; Tomáš Kepka; Petr Němec
Commentationes Mathematicae Universitatis Carolinae (1974)
- Volume: 015, Issue: 3, page 393-405
- ISSN: 0010-2628
Access Full Article
topHow to cite
topBican, Ladislav, et al. "Composition of preradicals." Commentationes Mathematicae Universitatis Carolinae 015.3 (1974): 393-405. <http://eudml.org/doc/16633>.
@article{Bican1974,
author = {Bican, Ladislav, Jambor, Pavel, Kepka, Tomáš, Němec, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {3},
pages = {393-405},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Composition of preradicals},
url = {http://eudml.org/doc/16633},
volume = {015},
year = {1974},
}
TY - JOUR
AU - Bican, Ladislav
AU - Jambor, Pavel
AU - Kepka, Tomáš
AU - Němec, Petr
TI - Composition of preradicals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1974
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 015
IS - 3
SP - 393
EP - 405
LA - eng
UR - http://eudml.org/doc/16633
ER -
References
top- L. BICAN P. JAMBOR T. KEPKA P. NĚMEC, Preradicals, Comment. Math. Univ. Carolinae 15 (1974), 75-83. (1974) MR0347906
- L. BICAN P. JAMBOR T. KEPKA P. NĚMEC, Hereditary and cohereditary preradicals, (to appear in Czech. Math.J.). MR0414611
- L. BICAN P. JAMBOR T. KEPKA P. NĚMEC, Stable and costable preradicals, (to appear in Acta Univ. Carolinae). MR0387333
Citations in EuDML Documents
top- Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Centrally splitting radicals
- Hana Jirásková, Josef Jirásko, Generalized projectivity
- Josef Jirásko, Pseudohereditary and pseudocohereditary preradicals
- Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Pseudoprojective modules
- Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec, Generation of preradicals
- Josef Jirásko, Notes on generalized prime and coprime modules. II.
- Josef Jirásko, Generalized projectivity. II.
- Josef Jirásko, Notes on generalized prime and coprime modules. I.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.