Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd

M. Aurada; M. Feischl; J. Kemetmüller; M. Page; D. Praetorius

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 4, page 1207-1235
  • ISSN: 0764-583X

Abstract

top
We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which includes the Dirichlet data oscillations. We prove that each H1 / 2–stable projection yields convergence of the adaptive algorithm even with quasi–optimal convergence rate. Numerical experiments with the Scott–Zhang projection conclude the work.

How to cite

top

Aurada, M., et al. "Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.4 (2013): 1207-1235. <http://eudml.org/doc/273190>.

@article{Aurada2013,
abstract = {We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which includes the Dirichlet data oscillations. We prove that each H1 / 2–stable projection yields convergence of the adaptive algorithm even with quasi–optimal convergence rate. Numerical experiments with the Scott–Zhang projection conclude the work.},
author = {Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {adaptive finite element method; convergence analysis; quasi–optimality; inhomogeneous Dirichlet data; convergence; quasi-optimality; stability; second-order elliptic equations; Poisson equation; mixed Dirichlet-Neumann boundary conditions; Scott-Zhang projection; error estimation; numerical experiments},
language = {eng},
number = {4},
pages = {1207-1235},
publisher = {EDP-Sciences},
title = {Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd},
url = {http://eudml.org/doc/273190},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Aurada, M.
AU - Feischl, M.
AU - Kemetmüller, J.
AU - Page, M.
AU - Praetorius, D.
TI - Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 4
SP - 1207
EP - 1235
AB - We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which includes the Dirichlet data oscillations. We prove that each H1 / 2–stable projection yields convergence of the adaptive algorithm even with quasi–optimal convergence rate. Numerical experiments with the Scott–Zhang projection conclude the work.
LA - eng
KW - adaptive finite element method; convergence analysis; quasi–optimality; inhomogeneous Dirichlet data; convergence; quasi-optimality; stability; second-order elliptic equations; Poisson equation; mixed Dirichlet-Neumann boundary conditions; Scott-Zhang projection; error estimation; numerical experiments
UR - http://eudml.org/doc/273190
ER -

References

top
  1. [1] M. Aurada, M. Feischl, J. Kemetmüller, M. Page and D. Praetorius, Each H1 / 2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd(extended preprint) ASC Report 03/2012, Institute for Analysis and Scientific Computing, Vienna University of Technology (2012). Zbl1275.65078MR3082295
  2. [2] M. Aurada, S. Ferraz-Leite and D. Praetorius, Estimator reduction and convergence of adaptive BEM. Appl. Numer. Math. 62 (2012). Zbl1237.65131MR2908795
  3. [3] M. Ainsworth and T. Oden, A posteriori error estimation in finite element analysis, Wiley–Interscience, New-York (2000). Zbl1008.65076MR1885308
  4. [4] S. Bartels, C. Carstensen and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math.99 (2004) 1–24. Zbl1062.65113MR2101782
  5. [5] P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math.97 (2004) 219–268. Zbl1063.65120MR2050077
  6. [6] P. Binev, W. Dahmen, R. DeVore and P. Petrushev, Approximation Classes for Adaptive Methods. Serdica. Math. J.28 (2002) 391–416. Zbl1039.42030MR1965238
  7. [7] R. Becker and S. Mao, Convergence and quasi–optimal complexity of a simple adaptive finite element method. ESAIM: M2AN 43 (2009) 1203–1219. Zbl1179.65139MR2588438
  8. [8] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math.44 (1984) 75–102. Zbl0574.65098MR745088
  9. [9] C. Carstensen, M. Maischak and E.P. Stephan, A posteriori error estimate and h-adaptive algorithm on surfaces for Symm’s integral equation. Numer. Math.90 (2001) 197–213. Zbl1018.65138MR1872725
  10. [10] M. Cascón, C. Kreuzer, R. Nochetto and K. Siebert: quasi–optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. Zbl1176.65122MR2421046
  11. [11] M. Cascón, R. Nochetto: Quasioptimal cardinality of AFEM driven by nonresidual estimators. IMA J. Numer. Anal.32 (2012) 1–29. Zbl1242.65237MR2875241
  12. [12] W. Dörfler: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.33 (1996) 1106–1124. Zbl0854.65090MR1393904
  13. [13] M. Feischl, M. Karkulik, M. Melenk and D. Praetorius, Quasi–optimal convergence rate for an adaptive boundary element method. SIAM J. Numer. Anal. (2013). Zbl1273.65186MR3047442
  14. [14] M. Feischl, M. Page and D. Praetorius, Convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data, ASC Report 34/2010, Institute for Analysis and Scientific Computing, Vienna University of Technology (2010). Zbl1291.65341
  15. [15] F. Gaspoz and P. Morin, Approximation classes for adaptive higher order finite element approximation. To appear in Math. Comput. (2012). Zbl1298.41024MR3223327
  16. [16] George C. Hsiao, Wolfgang and L. Wendland, Boundary Integral Equations. Springer Verlag, Berlin (2008). Zbl1157.65066MR2441884
  17. [17] C. Kreuzer and K. Siebert, Decay rates of adaptive finite elements with Dörfler marking. Numer. Math.117 (2011) 679–716. Zbl1219.65133MR2776915
  18. [18] M. Karkulik, G. Of and D. Praetorius, Convergence of adaptive 3D BEM for some weakly singular integral equations based on isotropic mesh–refinement. Numer. Methods Partial Differ. Eq. (2013). Zbl1280.65116
  19. [19] M. Karkulik, D. Pavlicek and D. Praetorius, On 2D newest vertex bisection: Optimality of mesh-closure and H1–stability of L2–projection. Constr. Approx. (2013). Zbl1302.65267MR3097045
  20. [20] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). Zbl0948.35001MR1742312
  21. [21] P. Morin, R. Nochetto and K. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal.18 (2000) 466–488. Zbl0970.65113MR1770058
  22. [22] P. Morin, R. Nochetto and K. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comput.72 (2003) 1067–1097. Zbl1019.65083MR1972728
  23. [23] P. Morin, K. Siebert and A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci.18 (2008) 707–737. Zbl1153.65111MR2413035
  24. [24] R. Sacchi and A. Veeser, Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. Sci.16 (2006) 319–346. Zbl1092.65098MR2238754
  25. [25] S. Sauter and C. Schwab, Randelementmethoden. Springer, Wiesbaden (2004). 
  26. [26] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput54 (1990) 483–493. Zbl0696.65007MR1011446
  27. [27] R. Stevenson: Optimality of standard adaptive finite element method. Found. Comput. Math. (2007) 245–269. Zbl1136.65109MR2324418
  28. [28] R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput.77 (2008) 227–241. Zbl1131.65095MR2353951
  29. [29] Traxler: An Algorithm for Adaptive Mesh Refinement in n Dimensions. Computing59 (1997) 115–137. Zbl0944.65123MR1475530
  30. [30] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley–Teubner (1996). Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.