Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations
Czechoslovak Mathematical Journal (1990)
- Volume: 40, Issue: 3, page 514-527
- ISSN: 0011-4642
Access Full Article
topHow to cite
topFeireisl, Eduard. "Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations." Czechoslovak Mathematical Journal 40.3 (1990): 514-527. <http://eudml.org/doc/13873>.
@article{Feireisl1990,
author = {Feireisl, Eduard},
journal = {Czechoslovak Mathematical Journal},
keywords = {global in time solutions; existence theorem},
language = {eng},
number = {3},
pages = {514-527},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations},
url = {http://eudml.org/doc/13873},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Feireisl, Eduard
TI - Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 3
SP - 514
EP - 527
LA - eng
KW - global in time solutions; existence theorem
UR - http://eudml.org/doc/13873
ER -
References
top- Amerio L., Prouse G., Almost-periodic functions and functional equations, Van Nostrand New York 1971. (1971) Zbl0215.15701MR0275061
- Arosio A., 10.1007/BF00275732, Arch. Rational Mech. AnaI. 86 (2) (1984), pp. 147-180. (1984) Zbl0563.35041MR0751306DOI10.1007/BF00275732
- Kato T., Locally coercive nonlinear equations, with applications to some periodic solutions, Duke Math. J. 51 (4) (1984), pp. 923-936. (1984) Zbl0571.47051MR0771388
- Kato T., 10.1007/BFb0067080, Lecture Notes in Math., Springer Berlin 1975, pp. 25 - 70. (1975) MR0407477DOI10.1007/BFb0067080
- Krejčí P., Hard implicit function theorem and small periodic solutions to partial differential equations, Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536. (1984) MR0775567
- Lions J. L., Magenes E., Problèmes aux limites non homogènes et applications I, Dunod Paris 1968. (1968)
- Matsumura A., 10.2977/prims/1195189813, Publ. RIMS Kyoto Univ. 13 (1977), pp. 349-379. (1977) MR0470507DOI10.2977/prims/1195189813
- Milani A., 10.1007/BF01776855, Ann. Mat. Pura Appl. 140 (4) (1985), pp. 331-344. (1985) MR0807643DOI10.1007/BF01776855
- Petzeltová H., Štědrý M., Time periodic solutions of telegraph equations in n spatial variables, Časopis Pěst. Mat. 109 (1984), pp. 60 - 73. (1984) MR0741209
- Rabinowitz P. H., 10.1002/cpa.3160220103, Comm. Pure Appl. Math. 22 (1969), pp. Î5-39. (1969) Zbl0157.17301MR0236504DOI10.1002/cpa.3160220103
- Shibata Y., On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain, Funkcialaj Ekvacioj 25 (1982), pp. 303-345. (1982) MR0707564
- Shibata Y., Tsutsumi Y., 10.1016/0362-546X(87)90051-4, Nonlinear Anal. 11 (3) 1987, pp. 335-365. (1987) Zbl0651.35053MR0881723DOI10.1016/0362-546X(87)90051-4
- Štědrý M., 10.1016/S0294-1449(16)30323-7, Ann. Inst. Henri Poincaré 6 (3) (1989), pp. 209-232. (1989) MR0995505DOI10.1016/S0294-1449(16)30323-7
- Vejvoda O., al., Partial differential equations: Time periodic solutions, Martinus Nijhoff PubI. 1982. (1982) Zbl0501.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.