Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations

Eduard Feireisl

Czechoslovak Mathematical Journal (1990)

  • Volume: 40, Issue: 3, page 514-527
  • ISSN: 0011-4642

How to cite

top

Feireisl, Eduard. "Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations." Czechoslovak Mathematical Journal 40.3 (1990): 514-527. <http://eudml.org/doc/13873>.

@article{Feireisl1990,
author = {Feireisl, Eduard},
journal = {Czechoslovak Mathematical Journal},
keywords = {global in time solutions; existence theorem},
language = {eng},
number = {3},
pages = {514-527},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations},
url = {http://eudml.org/doc/13873},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Feireisl, Eduard
TI - Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 3
SP - 514
EP - 527
LA - eng
KW - global in time solutions; existence theorem
UR - http://eudml.org/doc/13873
ER -

References

top
  1. Amerio L., Prouse G., Almost-periodic functions and functional equations, Van Nostrand New York 1971. (1971) Zbl0215.15701MR0275061
  2. Arosio A., 10.1007/BF00275732, Arch. Rational Mech. AnaI. 86 (2) (1984), pp. 147-180. (1984) Zbl0563.35041MR0751306DOI10.1007/BF00275732
  3. Kato T., Locally coercive nonlinear equations, with applications to some periodic solutions, Duke Math. J. 51 (4) (1984), pp. 923-936. (1984) Zbl0571.47051MR0771388
  4. Kato T., 10.1007/BFb0067080, Lecture Notes in Math., Springer Berlin 1975, pp. 25 - 70. (1975) MR0407477DOI10.1007/BFb0067080
  5. Krejčí P., Hard implicit function theorem and small periodic solutions to partial differential equations, Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536. (1984) MR0775567
  6. Lions J. L., Magenes E., Problèmes aux limites non homogènes et applications I, Dunod Paris 1968. (1968) 
  7. Matsumura A., 10.2977/prims/1195189813, Publ. RIMS Kyoto Univ. 13 (1977), pp. 349-379. (1977) MR0470507DOI10.2977/prims/1195189813
  8. Milani A., 10.1007/BF01776855, Ann. Mat. Pura Appl. 140 (4) (1985), pp. 331-344. (1985) MR0807643DOI10.1007/BF01776855
  9. Petzeltová H., Štědrý M., Time periodic solutions of telegraph equations in n spatial variables, Časopis Pěst. Mat. 109 (1984), pp. 60 - 73. (1984) MR0741209
  10. Rabinowitz P. H., 10.1002/cpa.3160220103, Comm. Pure Appl. Math. 22 (1969), pp. Î5-39. (1969) Zbl0157.17301MR0236504DOI10.1002/cpa.3160220103
  11. Shibata Y., On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain, Funkcialaj Ekvacioj 25 (1982), pp. 303-345. (1982) MR0707564
  12. Shibata Y., Tsutsumi Y., 10.1016/0362-546X(87)90051-4, Nonlinear Anal. 11 (3) 1987, pp. 335-365. (1987) Zbl0651.35053MR0881723DOI10.1016/0362-546X(87)90051-4
  13. Štědrý M., Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions, Ann. Inst. Henri Poincaré 6 (3) (1989), pp. 209-232. (1989) MR0995505
  14. Vejvoda O., al., Partial differential equations: Time periodic solutions, Martinus Nijhoff PubI. 1982. (1982) Zbl0501.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.