Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions

Milan Stedry

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 3, page 209-232
  • ISSN: 0294-1449

How to cite

top

Stedry, Milan. "Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions." Annales de l'I.H.P. Analyse non linéaire 6.3 (1989): 209-232. <http://eudml.org/doc/78175>.

@article{Stedry1989,
author = {Stedry, Milan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {telegraph equations; Schauder's theorem},
language = {eng},
number = {3},
pages = {209-232},
publisher = {Gauthier-Villars},
title = {Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions},
url = {http://eudml.org/doc/78175},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Stedry, Milan
TI - Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 3
SP - 209
EP - 232
LA - eng
KW - telegraph equations; Schauder's theorem
UR - http://eudml.org/doc/78175
ER -

References

top
  1. [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Vol. 2, Princeton, 1965. Zbl0142.37401MR178246
  2. [2] W. Craig, A Bifurcation Theory for Periodic Solutions of Nonlinear Dissipative Hyperbolic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4), T. 10, 1983, pp. 125-168. Zbl0518.35057MR713113
  3. [3] P. Krejčí, Hard Implicit Function Theorem and Small Periodic Solutions to Partial Differential Equations, Comment. Math. Univ. Carolin., T. 25, 1984, pp. 519-536. Zbl0567.35007MR775567
  4. [4] J. Moser, A Rapidly-Convergent Iteration Method and Nonlinear Differential Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (3), 1966, pp. 265-315. Zbl0174.47801MR199523
  5. [5] H. Petzeltova and M. Štĕdrý, Time-Periodic Solutions of Telegraph Equations m n Spatial Variables, Časopis pĕst. mat., Vol. 109, 1984, pp. 60-73. Zbl0544.35011MR741209
  6. [6] G. Prodi, Soluzioni Periodiche Dell'Equazione Delle Onde con Termine Dissipativo non Lineare, Rend. Sem. Mat. Univ. Padova, T. 36, 1966, pp. 37-49. Zbl0145.35601MR204822
  7. [7] P.H. Rabinowitz, Periodic Solutions of Nonlinear Hyperbolic Partial Differential Equations II, Comm. Pure Appl. Math., T. 22, 1969, pp. 15-39. Zbl0157.17301MR236504
  8. [8] J. Shatah, Global Existence of Small Solutions to Nonlinear Evolution Equations, J. Differential Equations, T. 46, 1982, pp. 409-425. Zbl0518.35046MR681231
  9. [9] Y. Shibata and Y. Tsutsumi, Local Existence of C∞-Solution for the Initial-Boundary Value Problem of Fully Nonlinear Wave Equation, Proc. Japan Acad. Sci. Ser. A Math. Sci., T. 60, 1984, pp. 149-152. Zbl0567.35061MR758054

NotesEmbed ?

top

You must be logged in to post comments.