Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions

Milan Stedry

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 3, page 209-232
  • ISSN: 0294-1449

How to cite

top

Stedry, Milan. "Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions." Annales de l'I.H.P. Analyse non linéaire 6.3 (1989): 209-232. <http://eudml.org/doc/78175>.

@article{Stedry1989,
author = {Stedry, Milan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {telegraph equations; Schauder's theorem},
language = {eng},
number = {3},
pages = {209-232},
publisher = {Gauthier-Villars},
title = {Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions},
url = {http://eudml.org/doc/78175},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Stedry, Milan
TI - Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 3
SP - 209
EP - 232
LA - eng
KW - telegraph equations; Schauder's theorem
UR - http://eudml.org/doc/78175
ER -

References

top
  1. [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Vol. 2, Princeton, 1965. Zbl0142.37401MR178246
  2. [2] W. Craig, A Bifurcation Theory for Periodic Solutions of Nonlinear Dissipative Hyperbolic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4), T. 10, 1983, pp. 125-168. Zbl0518.35057MR713113
  3. [3] P. Krejčí, Hard Implicit Function Theorem and Small Periodic Solutions to Partial Differential Equations, Comment. Math. Univ. Carolin., T. 25, 1984, pp. 519-536. Zbl0567.35007MR775567
  4. [4] J. Moser, A Rapidly-Convergent Iteration Method and Nonlinear Differential Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (3), 1966, pp. 265-315. Zbl0174.47801MR199523
  5. [5] H. Petzeltova and M. Štĕdrý, Time-Periodic Solutions of Telegraph Equations m n Spatial Variables, Časopis pĕst. mat., Vol. 109, 1984, pp. 60-73. Zbl0544.35011MR741209
  6. [6] G. Prodi, Soluzioni Periodiche Dell'Equazione Delle Onde con Termine Dissipativo non Lineare, Rend. Sem. Mat. Univ. Padova, T. 36, 1966, pp. 37-49. Zbl0145.35601MR204822
  7. [7] P.H. Rabinowitz, Periodic Solutions of Nonlinear Hyperbolic Partial Differential Equations II, Comm. Pure Appl. Math., T. 22, 1969, pp. 15-39. Zbl0157.17301MR236504
  8. [8] J. Shatah, Global Existence of Small Solutions to Nonlinear Evolution Equations, J. Differential Equations, T. 46, 1982, pp. 409-425. Zbl0518.35046MR681231
  9. [9] Y. Shibata and Y. Tsutsumi, Local Existence of C∞-Solution for the Initial-Boundary Value Problem of Fully Nonlinear Wave Equation, Proc. Japan Acad. Sci. Ser. A Math. Sci., T. 60, 1984, pp. 149-152. Zbl0567.35061MR758054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.