Time-periodic solutions of telegraph equations in spatial variables
Časopis pro pěstování matematiky (1984)
- Volume: 109, Issue: 1, page 60-73
- ISSN: 0528-2195
Access Full Article
topHow to cite
topReferences
top- J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sc. U.S.A. 47 (1961), 1824-1831. (1961) Zbl0104.30503MR0132859
- J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations I, II, Ann. Scuola Norm. Sup. Pisa Ser. III. 20 (1966), 265-315, 499-535. (1966)
- P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations II, Comm. Pure Appl. Math. 22 (1969), 15-39. (1969) Zbl0157.17301MR0236504
- S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, 1965. (1965) Zbl0142.37401MR0178246
- M. Štedrý, Periodic solutions of nonlinear equations of a beam with damping, (Czech.) Thesis, Math. Inst. Czechoslovak Acad. Sci., Prague 1973. (1973)
- H. Petzeltová, Application of Moser's method to a certain type of evolution equations, Czechoslovak Math. J. 33(108) (1983), 427-434. (1983) Zbl0547.35081MR0718925
Citations in EuDML Documents
top- Eduard Feireisl, Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations
- Eduard Feireisl, Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods
- Milan Stedry, Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions
- Eduard Feireisl, Global in time solutions to quasilinear telegraph equations involving operators with time delay
- Eduard Feireisl, Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations