Hard implicit function theorem and small periodic solutions to partial differential equations
Commentationes Mathematicae Universitatis Carolinae (1984)
- Volume: 025, Issue: 3, page 519-536
- ISSN: 0010-2628
Access Full Article
topHow to cite
topKrejčí, Pavel. "Hard implicit function theorem and small periodic solutions to partial differential equations." Commentationes Mathematicae Universitatis Carolinae 025.3 (1984): 519-536. <http://eudml.org/doc/17340>.
@article{Krejčí1984,
author = {Krejčí, Pavel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Existence; small solutions; abstract equation; Banach spaces; a priori estimates; Nash's iteration procedure; classical priodic solutions; Dirichlet boundary conditions},
language = {eng},
number = {3},
pages = {519-536},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hard implicit function theorem and small periodic solutions to partial differential equations},
url = {http://eudml.org/doc/17340},
volume = {025},
year = {1984},
}
TY - JOUR
AU - Krejčí, Pavel
TI - Hard implicit function theorem and small periodic solutions to partial differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 3
SP - 519
EP - 536
LA - eng
KW - Existence; small solutions; abstract equation; Banach spaces; a priori estimates; Nash's iteration procedure; classical priodic solutions; Dirichlet boundary conditions
UR - http://eudml.org/doc/17340
ER -
References
top- M. ALTMAN, A series of papers on nonlinear evolution equations, Nonlin. Anal., Theory, Meth., Appl. 8 (1984), No. 5, pp. 457 - 499. (1984) MR0741601
- W. CRAIG, A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations, Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X (1983), pp. 125 - 168. (1983) Zbl0518.35057MR0713113
- B. D. CRAVEN M. Z. NASHED, Generalized implicit function theorems when the derivative has no bounded inverse, Nonlin. Anal., Theory, Meth., Appl. 6 (1982), pp. 375-387. (1982) MR0654813
- M. R. HESTENES, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), pp. 183 - 192. (1941) Zbl0024.38602MR0003434
- L. HÖRMANDER, The boundary problems of physical geodesy, Arch. Rat. Keen. Anal. 62 (1976), pp. 1 - 52. (1976) MR0602181
- S. KLAINERMAN, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), pp. 43 - 101. (1980) Zbl0405.35056MR0544044
- P. KREJČÍ, Periodic vibrations of the electromagnetic field in ferromagnetic media, (in Czech). Candidate thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague, 1984. (1984)
- J. MOSER, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. 47 (1961), pp. 1824 - 1831. (1961) Zbl0104.30503MR0132859
- J. MOSER, A rapidly-convergent iteration method and nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265 - 315, 499 - 535. (1966)
- J. NASH, The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), pp. 20 - 63. (1956) MR0075639
- L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 115 - 162. (1959) Zbl0088.07601MR0109940
- H. PETZELTOVÁ, Application of Moser's method to a certain type of evolution equations, Czech. Math. J. 33 (1983), pp. 427 - 434. (1983) Zbl0547.35081MR0718925
- V. PTÁK, A modification of Newton's method, Čas. Pěst. Mat. 101 (1976), pp. 188 - 194. (1976) Zbl0328.46013MR0443326
- P. H. RABINOWITZ, Periodic solutions of nonlinear hyperbolic partial differential equations II, Comm. Pure Appl. Math. 22 (1969), pp. 15 - 39. (1969) Zbl0157.17301MR0236504
- J. T. SCHWARTZ, On Nash's implicit functional theorem, Comm. Pure Appl. Math. 13 (1960), pp. 509 - 530. (1960) Zbl0178.51002MR0114144
- J. SHATAH, Global existence of small solutions to nonlinear evolution equations, J. Diff. Eq. 46 (1982), pp.409 - 425. (1982) Zbl0518.35046MR0681231
- Y. SHIBATA, On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain, Funkc. Ekv. 25 (1982), pp. 303 - 345. (1982) MR0707564
- Y. SHIBATA, On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain, Tsukuba J. Math. 7 (1983), pp. 1 - 68. (1983) Zbl0524.35071MR0703667
Citations in EuDML Documents
top- Eduard Feireisl, Small time-periodic solutions to a nonlinear equation of a vibrating string
- Eduard Feireisl, Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations
- Eduard Feireisl, Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods
- Milan Stedry, Small time periodic solutions of fully nonlinear telegraph equations in more spatial dimensions
- Pavel Krejčí, Periodic solutions to Maxwell equations in nonlinear media
- Eduard Feireisl, Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations
- Eduard Feireisl, Global in time solutions to quasilinear telegraph equations involving operators with time delay
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.