On the convergence of Neumann series for noncompact operators

Dagmar Medková

Czechoslovak Mathematical Journal (1991)

  • Volume: 41, Issue: 2, page 312-316
  • ISSN: 0011-4642

How to cite

top

Medková, Dagmar. "On the convergence of Neumann series for noncompact operators." Czechoslovak Mathematical Journal 41.2 (1991): 312-316. <http://eudml.org/doc/13930>.

@article{Medková1991,
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {von Neumann series; contraction compact operator; Dirichlet problem; bounded linear operators; series},
language = {eng},
number = {2},
pages = {312-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the convergence of Neumann series for noncompact operators},
url = {http://eudml.org/doc/13930},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Medková, Dagmar
TI - On the convergence of Neumann series for noncompact operators
JO - Czechoslovak Mathematical Journal
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 2
SP - 312
EP - 316
LA - eng
KW - von Neumann series; contraction compact operator; Dirichlet problem; bounded linear operators; series
UR - http://eudml.org/doc/13930
ER -

References

top
  1. T. S. Angell R. E. Kleinmann J. Král, Layer potentials on boundaries with corners and edges, Časopis pro pěst, mat. 113 (1988), No. 4, 387-402. (1988) Zbl0697.31005MR0981880
  2. N. Dunford J. T. Schwarz, Linear Operators, New York, Intenscience 1963. (1963) 
  3. P. R. Halmos, Finite-dimensional Vector spaces, Princeton-Toronto-London-New York, D. van Nostrand, 1963. (1963) Zbl0107.01501MR0089819
  4. J. Král, Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin 1980. (1980) MR0590244
  5. J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15 (90), 1965, 454-473, 565-588. (1965) MR0190363
  6. J. Král W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace Matematiky 31 (1986), 293-308. (1986) Zbl0615.31005MR0854323
  7. J. Radon, Über Randwertaufgaben beim logarithmischen Potential, Gesammelte Abhandlungen, Verlag der Österreichischen Akad. der Wiss. 1987. (1987) Zbl0061.23403
  8. M. Schechter, Principles of functional analysis, Academic Press, New York and London 1971. (1971) Zbl0211.14501MR0445263
  9. N. Suzuki, 10.1007/BF01351698, Math. Ann. 220 (1976), 143-146. (1976) Zbl0304.47016MR0412855DOI10.1007/BF01351698
  10. A. E. Taylor, Úvod do funkcionální analýzy, Academia. Praha 1973. (1973) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.