Some examples concerning applicability of the Fredholm-Radon method in potential theory
Josef Král; Wolfgang L. Wendland
Aplikace matematiky (1986)
- Volume: 31, Issue: 4, page 293-308
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKrál, Josef, and Wendland, Wolfgang L.. "Some examples concerning applicability of the Fredholm-Radon method in potential theory." Aplikace matematiky 31.4 (1986): 293-308. <http://eudml.org/doc/15456>.
@article{Král1986,
abstract = {Simple examples of bounded domains $D\subset \mathbf \{R\}^3$ are considered for which the presence of peculiar corners and edges in the boundary $\delta D$ causes that the double layer potential operator acting on the space $\mathcal \{S\}(\delta D)$ of all continuous functions on $\delta D$ can for no value of the parameter $\alpha $ be approximated (in the sub-norm) by means of operators of the form $\alpha I+T$ (where $I$ is the identity operator and $T$ is a compact linear operator) with a deviation less then $|\alpha |$; on the other hand, such approximability turns out to be possible for $\alpha = \frac\{1\}\{2\}$ if a new norm is introduced in $\mathcal \{S\}(\delta D)$ with help of a suitable weight function.},
author = {Král, Josef, Wendland, Wolfgang L.},
journal = {Aplikace matematiky},
keywords = {double layer potential; Fredholm-Radom method in potential theory; rectangular; compact boundary; Dirichlet problem; Neumann problem; rectangular; compact boundary; Fredholm-Radon method; Dirichlet problem; double layer potential; Neumann problem},
language = {eng},
number = {4},
pages = {293-308},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some examples concerning applicability of the Fredholm-Radon method in potential theory},
url = {http://eudml.org/doc/15456},
volume = {31},
year = {1986},
}
TY - JOUR
AU - Král, Josef
AU - Wendland, Wolfgang L.
TI - Some examples concerning applicability of the Fredholm-Radon method in potential theory
JO - Aplikace matematiky
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 4
SP - 293
EP - 308
AB - Simple examples of bounded domains $D\subset \mathbf {R}^3$ are considered for which the presence of peculiar corners and edges in the boundary $\delta D$ causes that the double layer potential operator acting on the space $\mathcal {S}(\delta D)$ of all continuous functions on $\delta D$ can for no value of the parameter $\alpha $ be approximated (in the sub-norm) by means of operators of the form $\alpha I+T$ (where $I$ is the identity operator and $T$ is a compact linear operator) with a deviation less then $|\alpha |$; on the other hand, such approximability turns out to be possible for $\alpha = \frac{1}{2}$ if a new norm is introduced in $\mathcal {S}(\delta D)$ with help of a suitable weight function.
LA - eng
KW - double layer potential; Fredholm-Radom method in potential theory; rectangular; compact boundary; Dirichlet problem; Neumann problem; rectangular; compact boundary; Fredholm-Radon method; Dirichlet problem; double layer potential; Neumann problem
UR - http://eudml.org/doc/15456
ER -
References
top- K. Arbenz, Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken, Promotionsarbeit Nr. 2777, Eidgenössische Technische Hochschule in Zürich 1958, 1 - 41. (1958) Zbl0084.09603MR0101416
- Ю. Д. Бураго В. Г. Мазъя, Некоторые вопросы теории потенциала и теории функций для областей с нерегулярными границами, Записки научных семинаров ЛОМИ, т. 3, 1967. (1967) Zbl1230.82006
- A. P. Calderón С. P. Calderón E. Fabes M. Jodeit N. M. Riviere, 10.1090/S0002-9904-1978-14478-4, Bull. Amer. Math. Soc. 84 (1978), 287-290. (1978) MR0460656DOI10.1090/S0002-9904-1978-14478-4
- T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Inaugural - Dissertation Uppsala 1916. (1916)
- И. И. Данилюк, Нерегулярные граничные задачи на плоскости, Наука, Москва 1975. (1975) Zbl1170.01354
- E. В. Fabes M. Jodeit, Jr. J. E. Lewis, 10.1512/iumj.1977.26.26007, Indiana Univ. Math. J. 26 (1977), 95-114. (1977) MR0432899DOI10.1512/iumj.1977.26.26007
- J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15 (1965), 454-473; 565-588. (1965) MR0190363
- J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
- J. Král, 10.1007/BFb0091035, Lecture Notes in Math. vol. 823 (1980), Springer-Verlag. (1980) MR0590244DOI10.1007/BFb0091035
- J. Radon, Über lineare Funktionaltransformationen und Funktionalgleichungen, Sitzber. Akad. Wiss. Wien, Math.-Nat. Kl. IIa, 128 (1919), 1083-1121. (1919)
- J. Radon, Über die Randwertaufgaben beim logarithmischen Potential, ibid. 1123-1167. Zbl0061.23403
- F. Riesz B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest 1972. (1972)
- G. Verchota, 10.1016/0022-1236(84)90066-1, J. of Functional Analysis 59 (1984), 572-611. (1984) Zbl0589.31005MR0769382DOI10.1016/0022-1236(84)90066-1
- W. Wendland, Lösung der ersten und zweiten Randwertaufgaben des Innen- und Aussengebietes für Potentialgleichung im durch Randbelegungen, Bericht des Hahn-Meitner Institute für Kernforschung Berlin, HMI-B 41, BM 19 (1965), 1-99. (1965) MR0232010
- W. Wendland, 10.1007/BF02161886, Numerische Mathematik 11 (1968), 380-404. (1968) MR0231550DOI10.1007/BF02161886
- W. Wendland, Boundary element methods and their asymptotic convergence, Preprint Nr. 690, TH Darmstadt (1982), 1-82. (1982) MR0762829
- T. S. Angell R. E. Kleinman J. Král, Double layer potentials on boundaries with corners and edges, Comment. Math. Univ. Carolinae 27 (1986). (1986)
Citations in EuDML Documents
top- Thomas S. Angell, Ralph Ellis Kleinman, Josef Král, Layer potentials on boundaries with corners and edges
- Marius Mitrea, Victor Nistor, Boundary value problems and layer potentials on manifolds with cylindrical ends
- Dagmar Medková, On the convergence of Neumann series for noncompact operators
- Josef Král, Dagmar Medková, Essential norms of the Neumann operator of the arithmetical mean
- Dagmar Medková, Solution of the Neumann problem for the Laplace equation
- Josef Král, Dagmar Medková, Essential norms of a potential theoretic boundary integral operator in
- Dagmar Medková, Solution of the Robin problem for the Laplace equation
- Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
- Dagmar Medková, Invariance of the Fredholm radius of the Neumann operator
- Dagmar Medková, On essential norm of the Neumann operator
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.