Solution of the Neumann problem for the Laplace equation
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 4, page 763-784
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "Solution of the Neumann problem for the Laplace equation." Czechoslovak Mathematical Journal 48.4 (1998): 763-784. <http://eudml.org/doc/30453>.
@article{Medková1998,
abstract = {For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {single layer potential; generalized normal derivative; single layer potential; generalized normal derivative; double layer potential},
language = {eng},
number = {4},
pages = {763-784},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of the Neumann problem for the Laplace equation},
url = {http://eudml.org/doc/30453},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Medková, Dagmar
TI - Solution of the Neumann problem for the Laplace equation
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 4
SP - 763
EP - 784
AB - For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
LA - eng
KW - single layer potential; generalized normal derivative; single layer potential; generalized normal derivative; double layer potential
UR - http://eudml.org/doc/30453
ER -
References
top- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Potential theory and function theory for irregular regions, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, 1969. (1969) MR0240284
- Geometric Measure Theory, Springer-Verlag Berlin, Heidelberg, New York, 1969. (1969) Zbl0176.00801MR0257325
- Some remarks on topologically equivalent norms, Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95. (1960)
- On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19(4) (1986), 60–64. (1986) MR0880678
- Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
- Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980, pp. . (1980) MR0590244
- Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 293–308. (1986) MR0854323
- Fundamentals of modern potential theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
- Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27, Viniti, Moskva, 1988. (Russian) (1988)
- On the convergence of Neumann series for noncompact operator, Czechoslovak Math. J. 41(116) (1991), 312–316. (1991) MR1105448
- 10.1023/A:1022818618177, Czechoslovak Math. J. 47(122) (1997), 651–680. (1997) MR1479311DOI10.1023/A:1022818618177
- The third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- Smooth surfaces with infinite cyclic variation, Čas. pěst. mat. 96 (1971), 86–101. (Czech) (1971) Zbl0204.08002MR0284553
- Untersuchungen über das logarithmische und Newtonsche Potential, Teubner Verlag, Leipzig, 1877. (1877)
- Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig 22 (1870), 49–56, 264–321. (1870)
- Über die Methode des arithmetischen Mittels, Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung). (1887 (erste Abhandlung), 1888 (zweite Abhandlung))
- Potentialtheoretische Untersuchungen, B. G. Teubner, Leipzig, 1911. (1911)
- Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien 128 (1919), 1123–1167. (1919)
- ARRAY(0x9436470), Birkhäuser, Vienna, 1987. (1987)
- 10.1080/00036819208840093, The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015DOI10.1080/00036819508840313
- Leçons d’analyse fonctionnelles, Budapest, 1952. (1952)
- Principles of Functional Analysis, Academic Press, 1973. (1973) MR0445263
- Theorie des distributions, Hermann, Paris, 1950. (1950) Zbl0037.07301MR0209834
- Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
Citations in EuDML Documents
top- Dagmar Medková, The Neumann problem for the Laplace equation on general domains
- Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
- Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
- Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
- Dagmar Medková, Boundedness of the solution of the third problem for the Laplace equation
- Dagmar Medková, Solution of the Dirichlet problem for the Laplace equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.