The third boundary value problem in potential theory for domains with a piecewise smooth boundary

Dagmar Medková

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 4, page 651-679
  • ISSN: 0011-4642

Abstract

top
The paper investigates the third boundary value problem u n + λ u = μ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where ν is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure T ν . Denote by T ν T ν the corresponding operator on the space of signed measures on the boundary of the investigated domain G . If there is α 0 such that the essential spectral radius of ( α I - T ) is smaller than | α | (for example, if G R 3 is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential 𝒰 λ on G is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition μ for which μ ( G ) = 0 .

How to cite

top

Medková, Dagmar. "The third boundary value problem in potential theory for domains with a piecewise smooth boundary." Czechoslovak Mathematical Journal 47.4 (1997): 651-679. <http://eudml.org/doc/30390>.

@article{Medková1997,
abstract = {The paper investigates the third boundary value problem $\frac\{\partial u\}\{\partial n\}+\lambda u=\mu $ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where $\nu $ is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure $\{T\}\nu $. Denote by $\{T\}\:\nu \rightarrow \{T\}\nu $ the corresponding operator on the space of signed measures on the boundary of the investigated domain $G$. If there is $\alpha \ne 0$ such that the essential spectral radius of $(\alpha I-\{T\})$ is smaller than $|\alpha |$ (for example, if $G\subset R^3$ is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential $\{\mathcal \{U\}\}\lambda $ on $\partial G$ is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition $\mu \in $ for which $\mu (\partial G)=0$.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplace equation; single layer potential; nonsmooth domains; third boundary value problem},
language = {eng},
number = {4},
pages = {651-679},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The third boundary value problem in potential theory for domains with a piecewise smooth boundary},
url = {http://eudml.org/doc/30390},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Medková, Dagmar
TI - The third boundary value problem in potential theory for domains with a piecewise smooth boundary
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 651
EP - 679
AB - The paper investigates the third boundary value problem $\frac{\partial u}{\partial n}+\lambda u=\mu $ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where $\nu $ is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure ${T}\nu $. Denote by ${T}\:\nu \rightarrow {T}\nu $ the corresponding operator on the space of signed measures on the boundary of the investigated domain $G$. If there is $\alpha \ne 0$ such that the essential spectral radius of $(\alpha I-{T})$ is smaller than $|\alpha |$ (for example, if $G\subset R^3$ is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential ${\mathcal {U}}\lambda $ on $\partial G$ is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition $\mu \in $ for which $\mu (\partial G)=0$.
LA - eng
KW - Laplace equation; single layer potential; nonsmooth domains; third boundary value problem
UR - http://eudml.org/doc/30390
ER -

References

top
  1. Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
  2. Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken, Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1–41. Zbl0084.09603MR0101416
  3. Élements de la théorie classique du potential, Les cours de Sorbone, Paris, 1959. (1959) MR0106366
  4. Some questions in potential theory and function theory for regions with irregular boundaries (Russian), Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967). 
  5. On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3–34, Izdat. Leningrad. Univ., Leningrad, 1966. MR0213596
  6. Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation, Uppsala, 1916. (1916) 
  7. Nonregular Boundary Value Problems in the Plane, Nauka, Moskva, 1975. (Russian) (1975) MR0486546
  8. 10.1007/BF02412838, Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191–213. (1954) MR0062214DOI10.1007/BF02412838
  9. Nuovi teoremi relativi alle misure ( r - 1 ) -dimensionali in uno spazi ad r dimensioni, Ricerche Mat. 4 (1955), 95–113. (1955) MR0074499
  10. Invariance of the Fredholm radius of an operator in potential theory, Čas. pěst. mat. 112 (1987), no. 3, 269–283. (1987) MR0905974
  11. Linear Operators, Interscience, New York, 1963. (1963) 
  12. 10.1080/00036819208840092, Applicable Analysis 45 (1992), 117–134. (1992) Zbl0749.31002MR1293593DOI10.1080/00036819208840092
  13. Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344., Springer-Verlag, Berlin-Heidelberg-New York, 1988. (1988) MR0973881
  14. 10.1512/iumj.1977.26.26007, Indiana Univ. Math. J. 26 (1977), 95–114. (1977) MR0432899DOI10.1512/iumj.1977.26.26007
  15. 10.1007/978-1-4612-2898-1_12, Partial Differential Equations With Minimal Smoothness and Applications, 129–137, IMA Vol. Math. Appl. 42, Springer, New York, 1992. (1992) MR1155859DOI10.1007/978-1-4612-2898-1_12
  16. 10.1090/S0002-9939-1958-0095245-2, Proc. Amer. Math. Soc. 9 (1958), 447–451. (1958) Zbl0087.27302MR0095245DOI10.1090/S0002-9939-1958-0095245-2
  17. Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
  18. 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44–76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
  19. Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201–206, de Gruyter, Berlin, 1992. (1992) MR1167235
  20. On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian)., Vest. Leningr. un. mat. mech. (1986), no. 4, 60–64. (1986) MR0880678
  21. Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points, Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21–23. (Russian) (1988) MR1020233
  22. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989, .(Russian) 
  23. On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms C , C α , L p , Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990, .(Russian) 
  24. Finite-Dimensional Vector Spaces, D. van Nostrand, Princeton-Toronto--London-New York, 1963. (1963) Zbl0107.01501MR0089819
  25. 10.2307/2006988, Annals of Mathematics 113 (1981), 367–382. (1981) MR0607897DOI10.2307/2006988
  26. 10.1090/S0273-0979-1981-14884-9, Bulletin of AMS 4 (1981), 203–207. (1981) MR0598688DOI10.1090/S0273-0979-1981-14884-9
  27. Lineare Integraloperatoren, B.G. Teubner, Stuttgart, 1970. (1970) MR0461049
  28. Integral operators in potential theory., Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980. (1980) MR0590244
  29. The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15(90) (1965), 454–473, 565–588. (1965) MR0190363
  30. Flows of heat and the Fourier problem, Czechoslovak Math. J. 20(95) (1970), 556–597. (1970) MR0271554
  31. Note on sets whose characteristic functions have singed measure for their partial derivatives, Čas. pěst. mat. 86 (1961), 178–194. (Czech) (1961) MR0136697
  32. 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
  33. Some example concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 293–308. (1986) MR0854323
  34. Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
  35. Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, t. 27, Viniti, Moskva, 1988. (Russian) (1988) 
  36. Boundary integral equations, Encyclopedia of Mathematical Sciences, vol. 27, Springer-Verlag, 1991. (1991) 
  37. 10.4171/ZAA/83, Z. Anal. Anwend. 2 (1983), no. 4, 335–359, No. 6, 523–551. (Russian) (1983) MR0719176DOI10.4171/ZAA/83
  38. Boundary integral methods for the Laplace equation. Thesis, Australian National University, 1985. (1985) MR0825529
  39. On the convergence of Neumann series for noncompact operators, Czechoslovak Math. J. 41(116) (1991), 312–316. (1991) MR1105448
  40. Invariance of the Fredholm radius of the Neumann operator, Čas. pěst. mat. 115 (1990), no. 2, 147–164. (1990) MR1054002
  41. On essential norm of Neumann operator, Mathematica Bohemica 117 (1992), no. 4, 393–408. (1992) MR1197288
  42. Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki, Moskva, 1949. (1949) 
  43. The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
  44. Generalized Robin problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
  45. An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  46. The third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  47. Potentialtheoretische Untersuchungen, Leipzig, 1911. (1911) 
  48. Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works, vol. 1, 1987. (1987) 
  49. Über Randwertaufgaben beim logarithmischen Potential. Collected Works, vol. 1, 1987. (1987) 
  50. 10.1080/00036819208840093, Applicable Analysis 45 (1992), no. 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
  51. 10.1007/BF01196880, Integral Equations and Operator Theory 12 (1989), 835–854. (1989) Zbl0695.47046MR1018215DOI10.1007/BF01196880
  52. 10.1007/BF01199907, Integral Equations Oper. Theory 14 (1991), 229–250. (1991) MR1090703DOI10.1007/BF01199907
  53. Leçons d’analyse fonctionelle, Budapest, 1952. (1952) 
  54. Theory of the Integral, Hafner Publishing Comp., New York, 1937. (1937) Zbl0017.30004
  55. Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35–44, Izdat. Leningrad. Univ., Leningrad, 1966. (1966) MR0213597
  56. Principles of Functional Analysis, Academic Press, 1973. (1973) MR0467221
  57. Théorie des distributions, Hermann, Paris, 1950. (1950) Zbl0037.07301MR0209834
  58. 10.1007/BF01351698, Math. Ann. 220 (1976), 143–146. (1976) Zbl0304.47016MR0412855DOI10.1007/BF01351698
  59. Introduction to Functional Analysis, New York, 1967. (1967) 
  60. 10.1016/0022-1236(84)90066-1, Journal of Functional Analysis 59 (1984), 572–611. (1984) Zbl0589.31005MR0769382DOI10.1016/0022-1236(84)90066-1
  61. Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504

Citations in EuDML Documents

top
  1. Dagmar Medková, Solution of the Neumann problem for the Laplace equation
  2. Dagmar Medková, Solution of the Robin problem for the Laplace equation
  3. Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
  4. Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
  5. Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
  6. Dagmar Medková, Boundedness of the solution of the third problem for the Laplace equation
  7. Dagmar Medková, Solution of the Dirichlet problem for the Laplace equation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.