The third boundary value problem in potential theory for domains with a piecewise smooth boundary
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 4, page 651-679
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "The third boundary value problem in potential theory for domains with a piecewise smooth boundary." Czechoslovak Mathematical Journal 47.4 (1997): 651-679. <http://eudml.org/doc/30390>.
@article{Medková1997,
abstract = {The paper investigates the third boundary value problem $\frac\{\partial u\}\{\partial n\}+\lambda u=\mu $ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where $\nu $ is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure $\{T\}\nu $. Denote by $\{T\}\:\nu \rightarrow \{T\}\nu $ the corresponding operator on the space of signed measures on the boundary of the investigated domain $G$. If there is $\alpha \ne 0$ such that the essential spectral radius of $(\alpha I-\{T\})$ is smaller than $|\alpha |$ (for example, if $G\subset R^3$ is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential $\{\mathcal \{U\}\}\lambda $ on $\partial G$ is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition $\mu \in $ for which $\mu (\partial G)=0$.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplace equation; single layer potential; nonsmooth domains; third boundary value problem},
language = {eng},
number = {4},
pages = {651-679},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The third boundary value problem in potential theory for domains with a piecewise smooth boundary},
url = {http://eudml.org/doc/30390},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Medková, Dagmar
TI - The third boundary value problem in potential theory for domains with a piecewise smooth boundary
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 651
EP - 679
AB - The paper investigates the third boundary value problem $\frac{\partial u}{\partial n}+\lambda u=\mu $ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where $\nu $ is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure ${T}\nu $. Denote by ${T}\:\nu \rightarrow {T}\nu $ the corresponding operator on the space of signed measures on the boundary of the investigated domain $G$. If there is $\alpha \ne 0$ such that the essential spectral radius of $(\alpha I-{T})$ is smaller than $|\alpha |$ (for example, if $G\subset R^3$ is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential ${\mathcal {U}}\lambda $ on $\partial G$ is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition $\mu \in $ for which $\mu (\partial G)=0$.
LA - eng
KW - Laplace equation; single layer potential; nonsmooth domains; third boundary value problem
UR - http://eudml.org/doc/30390
ER -
References
top- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken, Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1–41. Zbl0084.09603MR0101416
- Élements de la théorie classique du potential, Les cours de Sorbone, Paris, 1959. (1959) MR0106366
- Some questions in potential theory and function theory for regions with irregular boundaries (Russian), Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967).
- On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3–34, Izdat. Leningrad. Univ., Leningrad, 1966. MR0213596
- Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation, Uppsala, 1916. (1916)
- Nonregular Boundary Value Problems in the Plane, Nauka, Moskva, 1975. (Russian) (1975) MR0486546
- 10.1007/BF02412838, Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191–213. (1954) MR0062214DOI10.1007/BF02412838
- Nuovi teoremi relativi alle misure -dimensionali in uno spazi ad dimensioni, Ricerche Mat. 4 (1955), 95–113. (1955) MR0074499
- Invariance of the Fredholm radius of an operator in potential theory, Čas. pěst. mat. 112 (1987), no. 3, 269–283. (1987) MR0905974
- Linear Operators, Interscience, New York, 1963. (1963)
- 10.1080/00036819208840092, Applicable Analysis 45 (1992), 117–134. (1992) Zbl0749.31002MR1293593DOI10.1080/00036819208840092
- Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344., Springer-Verlag, Berlin-Heidelberg-New York, 1988. (1988) MR0973881
- 10.1512/iumj.1977.26.26007, Indiana Univ. Math. J. 26 (1977), 95–114. (1977) MR0432899DOI10.1512/iumj.1977.26.26007
- 10.1007/978-1-4612-2898-1_12, Partial Differential Equations With Minimal Smoothness and Applications, 129–137, IMA Vol. Math. Appl. 42, Springer, New York, 1992. (1992) MR1155859DOI10.1007/978-1-4612-2898-1_12
- 10.1090/S0002-9939-1958-0095245-2, Proc. Amer. Math. Soc. 9 (1958), 447–451. (1958) Zbl0087.27302MR0095245DOI10.1090/S0002-9939-1958-0095245-2
- Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
- 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44–76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
- Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201–206, de Gruyter, Berlin, 1992. (1992) MR1167235
- On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian)., Vest. Leningr. un. mat. mech. (1986), no. 4, 60–64. (1986) MR0880678
- Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points, Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21–23. (Russian) (1988) MR1020233
- Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989, .(Russian)
- On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms , , , Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990, .(Russian)
- Finite-Dimensional Vector Spaces, D. van Nostrand, Princeton-Toronto--London-New York, 1963. (1963) Zbl0107.01501MR0089819
- 10.2307/2006988, Annals of Mathematics 113 (1981), 367–382. (1981) MR0607897DOI10.2307/2006988
- 10.1090/S0273-0979-1981-14884-9, Bulletin of AMS 4 (1981), 203–207. (1981) MR0598688DOI10.1090/S0273-0979-1981-14884-9
- Lineare Integraloperatoren, B.G. Teubner, Stuttgart, 1970. (1970) MR0461049
- Integral operators in potential theory., Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980. (1980) MR0590244
- The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15(90) (1965), 454–473, 565–588. (1965) MR0190363
- Flows of heat and the Fourier problem, Czechoslovak Math. J. 20(95) (1970), 556–597. (1970) MR0271554
- Note on sets whose characteristic functions have singed measure for their partial derivatives, Čas. pěst. mat. 86 (1961), 178–194. (Czech) (1961) MR0136697
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
- Some example concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 293–308. (1986) MR0854323
- Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
- Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, t. 27, Viniti, Moskva, 1988. (Russian) (1988)
- Boundary integral equations, Encyclopedia of Mathematical Sciences, vol. 27, Springer-Verlag, 1991. (1991)
- 10.4171/ZAA/83, Z. Anal. Anwend. 2 (1983), no. 4, 335–359, No. 6, 523–551. (Russian) (1983) MR0719176DOI10.4171/ZAA/83
- Boundary integral methods for the Laplace equation. Thesis, Australian National University, 1985. (1985) MR0825529
- On the convergence of Neumann series for noncompact operators, Czechoslovak Math. J. 41(116) (1991), 312–316. (1991) MR1105448
- Invariance of the Fredholm radius of the Neumann operator, Čas. pěst. mat. 115 (1990), no. 2, 147–164. (1990) MR1054002
- On essential norm of Neumann operator, Mathematica Bohemica 117 (1992), no. 4, 393–408. (1992) MR1197288
- Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki, Moskva, 1949. (1949)
- The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
- Generalized Robin problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
- An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- The third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- Potentialtheoretische Untersuchungen, Leipzig, 1911. (1911)
- Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works, vol. 1, 1987. (1987)
- Über Randwertaufgaben beim logarithmischen Potential. Collected Works, vol. 1, 1987. (1987)
- 10.1080/00036819208840093, Applicable Analysis 45 (1992), no. 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1007/BF01196880, Integral Equations and Operator Theory 12 (1989), 835–854. (1989) Zbl0695.47046MR1018215DOI10.1007/BF01196880
- 10.1007/BF01199907, Integral Equations Oper. Theory 14 (1991), 229–250. (1991) MR1090703DOI10.1007/BF01199907
- Leçons d’analyse fonctionelle, Budapest, 1952. (1952)
- Theory of the Integral, Hafner Publishing Comp., New York, 1937. (1937) Zbl0017.30004
- Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35–44, Izdat. Leningrad. Univ., Leningrad, 1966. (1966) MR0213597
- Principles of Functional Analysis, Academic Press, 1973. (1973) MR0467221
- Théorie des distributions, Hermann, Paris, 1950. (1950) Zbl0037.07301MR0209834
- 10.1007/BF01351698, Math. Ann. 220 (1976), 143–146. (1976) Zbl0304.47016MR0412855DOI10.1007/BF01351698
- Introduction to Functional Analysis, New York, 1967. (1967)
- 10.1016/0022-1236(84)90066-1, Journal of Functional Analysis 59 (1984), 572–611. (1984) Zbl0589.31005MR0769382DOI10.1016/0022-1236(84)90066-1
- Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
Citations in EuDML Documents
top- Dagmar Medková, Solution of the Neumann problem for the Laplace equation
- Dagmar Medková, Solution of the Robin problem for the Laplace equation
- Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
- Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
- Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
- Dagmar Medková, Boundedness of the solution of the third problem for the Laplace equation
- Dagmar Medková, Solution of the Dirichlet problem for the Laplace equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.