Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
Inventiones mathematicae (1995)
- Volume: 121, Issue: 3, page 439-480
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topChai, Ching-Li. "Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.." Inventiones mathematicae 121.3 (1995): 439-480. <http://eudml.org/doc/144308>.
@article{Chai1995,
author = {Chai, Ching-Li},
journal = {Inventiones mathematicae},
keywords = {symplectic separable isogeny class; moduli space; abelian varieties; Hilbert-Blumenthal case},
number = {3},
pages = {439-480},
title = {Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.},
url = {http://eudml.org/doc/144308},
volume = {121},
year = {1995},
}
TY - JOUR
AU - Chai, Ching-Li
TI - Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
JO - Inventiones mathematicae
PY - 1995
VL - 121
IS - 3
SP - 439
EP - 480
KW - symplectic separable isogeny class; moduli space; abelian varieties; Hilbert-Blumenthal case
UR - http://eudml.org/doc/144308
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.