On the solvability of von Kármán equations
Aplikace matematiky (1975)
- Volume: 20, Issue: 1, page 48-62
- ISSN: 0862-7940
Access Full Article
topHow to cite
topJohn, Oldřich, and Nečas, Jindřich. "On the solvability of von Kármán equations." Aplikace matematiky 20.1 (1975): 48-62. <http://eudml.org/doc/14893>.
@article{John1975,
author = {John, Oldřich, Nečas, Jindřich},
journal = {Aplikace matematiky},
language = {eng},
number = {1},
pages = {48-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the solvability of von Kármán equations},
url = {http://eudml.org/doc/14893},
volume = {20},
year = {1975},
}
TY - JOUR
AU - John, Oldřich
AU - Nečas, Jindřich
TI - On the solvability of von Kármán equations
JO - Aplikace matematiky
PY - 1975
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 20
IS - 1
SP - 48
EP - 62
LA - eng
UR - http://eudml.org/doc/14893
ER -
References
top- Berger M. S., 10.1002/cpa.3160200405, Comm. Pure Appl. Math., XX, 1967, 687-719. (1967) Zbl0162.56405MR0221808DOI10.1002/cpa.3160200405
- Hlaváček I., Naumann J., Inhomogeneous boundary value problems for the von Kármán Equations, I, Aplikace matematiky 19 (1974), 253 - 269. (1974) MR0377307
- Knightly G. H., 10.1007/BF00290614, Arch. Rat. Mech. Anal., 27, 1967, 233-242. (1967) MR0220472DOI10.1007/BF00290614
- Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- Nečas J., Fredholm theory of boundary value problems for nonlinear ordinary differential operators, Theory of Nonlinear Operators. Academia, Prague, 1973, 85-119. (Proceedings of the Summer School held in September 1971 at Babylon, Czechoslovakia). (1973) MR0402562
Citations in EuDML Documents
top- Jan Franců, On Signorini problem for von Kármán equations. The case of angular domain
- Jozef Kačur, On the solution of a generalized system of von Kármán equations
- Július Cibula, Equations de von Kármán. I. Résultat d'existence pour les problèmes aux limites non homogènes.
- Oldřich John, On Signorini problem for von Kármán equations
- Pavol Quittner, Generic properties of von Kármán equations
- Igor Bock, Ivan Hlaváček, Ján Lovíšek, On the optimal control problem governed by the equations of von Kármán. III. The case of an arbitrary large perpendicular load
- Július Cibula, Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain
- Ivan Hlaváček, Oldřich John, Alois Kufner, Josef Málek, Nečasová, Š. , Jana Stará, Vladimír Šverák, In Memoriam Jindřich Nečas
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.