# On the solution of a generalized system of von Kármán equations

Aplikace matematiky (1981)

- Volume: 26, Issue: 6, page 437-448
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topKačur, Jozef. "On the solution of a generalized system of von Kármán equations." Aplikace matematiky 26.6 (1981): 437-448. <http://eudml.org/doc/15215>.

@article{Kačur1981,

abstract = {A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.},

author = {Kačur, Jozef},

journal = {Aplikace matematiky},

keywords = {existence of solution; nonlinear relation between intensity of stresses and deformations; existence of solution; nonlinear relation between intensity of stresses and deformations},

language = {eng},

number = {6},

pages = {437-448},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On the solution of a generalized system of von Kármán equations},

url = {http://eudml.org/doc/15215},

volume = {26},

year = {1981},

}

TY - JOUR

AU - Kačur, Jozef

TI - On the solution of a generalized system of von Kármán equations

JO - Aplikace matematiky

PY - 1981

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 26

IS - 6

SP - 437

EP - 448

AB - A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.

LA - eng

KW - existence of solution; nonlinear relation between intensity of stresses and deformations; existence of solution; nonlinear relation between intensity of stresses and deformations

UR - http://eudml.org/doc/15215

ER -

## References

top- Ю.Р. Лепик, Равновесие гибких упруго-пластических пластинок при больших прогибах, Инжинерный сборник, том XX, 1956, 37-51. (1956) Zbl0995.90522
- Н. Ф. Ершов, Об упруго-пластическом изгибе пластинок при больших прогибах, Строительная механика и расчет сооружений. Н.-З, 1962. (1962) Zbl1005.68507
- О. John J. Nečas, On the solvability of von Kármán equations, Aplikace matematiky 20 (1975), 48-62, (1975) MR0380099
- I. Hlaváček J. Naumann, Inhomogeneous boundary value problems for the von Kármán equations, I, Aplikace matematiky 19 (1974), 253-269. (1974) MR0377307
- J. Franců, On Signorini problem for von Kármán equations (The case of angular domain), Aplikace matematiky 24 (1979), 355 - 371. (1979) Zbl0479.73041MR0547039
- G. H. Knightly, An existence theorem for the von Kármán equations, Arch. Rat. Mech. Anal., (1967), 233-242. (1967) Zbl0162.56303MR0220472
- И. В. Скрыпник, Нелинейные еллщтгические уравнения высшего порядка, ,,Наукова думка", Киев 1973. (1973) Zbl1131.90321
- R. Kodnár, Non-linear problems of the orthogonal anisotropic shallow shells, Proceedings of summer school "Theory of nonlinear operators". Abhandlungen der Akademie der Wissenschaften der DDR. N-6, 1977. (1977)

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.