On a volume constrained variational problem in SBV 2 ( Ω ) : part I

Ana Cristina Barroso; José Matias

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 223-237
  • ISSN: 1292-8119

Abstract

top
We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u S B V 2 ( Ω ) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E ( · ) is proved and the asymptotic behaviour of the solutions is investigated.

How to cite

top

Barroso, Ana Cristina, and Matias, José. "On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 223-237. <http://eudml.org/doc/245983>.

@article{Barroso2002,
abstract = {We consider the problem of minimizing the energy\[\hspace*\{-42.67912pt\}E(u):= \int \_\{\Omega \}|\nabla u(x)|^2 \, \{\rm d\}x + \int \_\{S\_u \cap \Omega \}\left(1 + |[u](x)|\right) \, \{\rm d\}H^\{N - 1\}(x)\]among all functions $u \in SBV^2(\Omega )$ for which two level sets $\lbrace u = l_i\rbrace $ have prescribed Lebesgue measure $\alpha _i$. Subject to this volume constraint the existence of minimizers for $E(\cdot )$ is proved and the asymptotic behaviour of the solutions is investigated.},
author = {Barroso, Ana Cristina, Matias, José},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {special functions of bounded variation; level sets; lower semicontinuity; $\Gamma $-limit; -limit; SBV},
language = {eng},
pages = {223-237},
publisher = {EDP-Sciences},
title = {On a volume constrained variational problem in SBV$\{^2(\Omega )\}$ : part I},
url = {http://eudml.org/doc/245983},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Barroso, Ana Cristina
AU - Matias, José
TI - On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 223
EP - 237
AB - We consider the problem of minimizing the energy\[\hspace*{-42.67912pt}E(u):= \int _{\Omega }|\nabla u(x)|^2 \, {\rm d}x + \int _{S_u \cap \Omega }\left(1 + |[u](x)|\right) \, {\rm d}H^{N - 1}(x)\]among all functions $u \in SBV^2(\Omega )$ for which two level sets $\lbrace u = l_i\rbrace $ have prescribed Lebesgue measure $\alpha _i$. Subject to this volume constraint the existence of minimizers for $E(\cdot )$ is proved and the asymptotic behaviour of the solutions is investigated.
LA - eng
KW - special functions of bounded variation; level sets; lower semicontinuity; $\Gamma $-limit; -limit; SBV
UR - http://eudml.org/doc/245983
ER -

References

top
  1. [1] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989) 857-881. Zbl0767.49001MR1032614
  2. [2] L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume constrained variational problem. Arch. Rat. Mech. Anal. 149 (1999) 23-47. Zbl0945.49005MR1723033
  3. [3] N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. Zbl0588.49005MR826512
  4. [4] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. Zbl0449.35105MR618549
  5. [5] A. Braides and V. Chiadò–Piat, Integral representation results for functionals defined on S B V ( Ω ; m ) . J. Math. Pures Appl. 75 (1996) 595-626. Zbl0880.49010
  6. [6] G. Congedo and L. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1991) 175-195. Zbl0729.49003MR1096603
  7. [7] E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82 (1988) 199-210. Zbl0715.49014MR1152641
  8. [8] G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser (1993). Zbl0816.49001MR1201152
  9. [9] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Stud. Adv. Math. (1992). Zbl0804.28001MR1158660
  10. [10] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984). Zbl0545.49018MR775682
  11. [11] M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. Zbl0857.76008MR1404829
  12. [12] P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries. Interf. Free Boundaries 2 (2000) 201-212. Zbl0995.49002MR1760412
  13. [13] W. Ziemer, Weakly Differentiable Functions. Springer-Verlag (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.