Period doubling bifurcations in a two-box model of the Brusselator

Alois Klíč

Aplikace matematiky (1983)

  • Volume: 28, Issue: 5, page 335-343
  • ISSN: 0862-7940

Abstract

top
Two theorems about period doubling bifurcations are proved. A special case, where one multiplier of the homogeneous solution is equal to +1 is discussed in the Appendix.

How to cite

top

Klíč, Alois. "Period doubling bifurcations in a two-box model of the Brusselator." Aplikace matematiky 28.5 (1983): 335-343. <http://eudml.org/doc/15313>.

@article{Klíč1983,
abstract = {Two theorems about period doubling bifurcations are proved. A special case, where one multiplier of the homogeneous solution is equal to +1 is discussed in the Appendix.},
author = {Klíč, Alois},
journal = {Aplikace matematiky},
keywords = {invariant vector field; Poincaré mapping; rotation number; period doubling bifurcation; invariant vector field; Poincaré mapping; rotation number; period doubling bifurcation},
language = {eng},
number = {5},
pages = {335-343},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Period doubling bifurcations in a two-box model of the Brusselator},
url = {http://eudml.org/doc/15313},
volume = {28},
year = {1983},
}

TY - JOUR
AU - Klíč, Alois
TI - Period doubling bifurcations in a two-box model of the Brusselator
JO - Aplikace matematiky
PY - 1983
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 28
IS - 5
SP - 335
EP - 343
AB - Two theorems about period doubling bifurcations are proved. A special case, where one multiplier of the homogeneous solution is equal to +1 is discussed in the Appendix.
LA - eng
KW - invariant vector field; Poincaré mapping; rotation number; period doubling bifurcation; invariant vector field; Poincaré mapping; rotation number; period doubling bifurcation
UR - http://eudml.org/doc/15313
ER -

References

top
  1. R. Lefevre, Stabilité des Structures Dissipatives, Bull. Classe Sci., Acad. Roy. Belgique, 54, 1968, 712. (1968) 
  2. P. Glansdorff I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, New York, 1971. (1971) 
  3. J. J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. of Chemical Physics, Vol. 18, No. 9, 1973. (1973) 
  4. G. Jetschke, 10.1515/jnet.1979.4.2.93, J. Non-Equilib. Thermodyn., Vol. 4, 1979, No. 2. (1979) DOI10.1515/jnet.1979.4.2.93
  5. V. I. Arnold, Дополнительные главы теории обыкновенных дифференциальных уравнений, Nauka, Moskva, 1978. (1978) Zbl0486.68013MR0526218
  6. W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. (1975) Zbl0333.53001MR0426007
  7. J. E. Marsden M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976. (1976) MR0494309
  8. D. Ruelle, 10.1007/BF00247751, Arch. Rat. Mech. An., 51, 1973, 136-152. (1973) MR0348796DOI10.1007/BF00247751
  9. I. Schreiber M. Marek, 10.1016/0375-9601(82)90566-7, Physics Letters, Vol. 91, No. 6, 1982, p. 263. (1982) MR0675223DOI10.1016/0375-9601(82)90566-7
  10. I. Schreiber M. Marek, Strange attractors in coupled reaction-diffusion cells, Physica 5D, 1982, 258-272. (1982) MR0680563
  11. M. Kawato R. Suzuki, 10.1016/0022-5193(80)90352-5, J. Theor. Biology, 1980, 86, 547-575. (1980) MR0610391DOI10.1016/0022-5193(80)90352-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.