Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries

Ivan Hlaváček; Michal Křížek

Aplikace matematiky (1984)

  • Volume: 29, Issue: 1, page 52-69
  • ISSN: 0862-7940

Abstract

top
Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix.

How to cite

top

Hlaváček, Ivan, and Křížek, Michal. "Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries." Aplikace matematiky 29.1 (1984): 52-69. <http://eudml.org/doc/15333>.

@article{Hlaváček1984,
abstract = {Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence; dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence},
language = {eng},
number = {1},
pages = {52-69},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries},
url = {http://eudml.org/doc/15333},
volume = {29},
year = {1984},
}

TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 1
SP - 52
EP - 69
AB - Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix.
LA - eng
KW - dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence; dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence
UR - http://eudml.org/doc/15333
ER -

References

top
  1. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
  2. P. G. Ciarlet P. A. Raviart, 10.1016/0045-7825(72)90006-0, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217-249. (1972) Zbl0261.65079MR0375801DOI10.1016/0045-7825(72)90006-0
  3. P. Doktor, On the density of smooth functions in certain subspaces of Sobolev spaces, Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. (1973) Zbl0268.46036MR0336317
  4. B. M. Fraeijs de Veubeke M. Hogge, 10.1002/nme.1620050107, Internat. J. Numer. Methods Engrg. 5 (1972), 65-82. (1972) DOI10.1002/nme.1620050107
  5. V. Girault P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Springer-Verlg, Berlin, Heidelberg, New York, 1979. (1979) Zbl0413.65081MR0548867
  6. J. Haslinger I. Hlaváček, Contact between elastic perfectly plastic bodies, Apl. Mat. 27 (1982), 27-45. (1982) Zbl0495.73094MR0640138
  7. J. Haslinger I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43 - 65. (1976) Zbl0326.35020MR0398126
  8. I. Hlaváček, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. (1980) Zbl0424.65056MR0554090
  9. M. Křížek, Conforming equilibrium finite element methods for some elliptic plane problems, RAIRO Anal. Numer. 17 (1983), 35--65. (1983) Zbl0541.76003MR0695451
  10. O. A. Ladyzenskaya, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969. (1969) MR0254401
  11. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  12. J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. (1981) Zbl0448.73009MR0600655
  13. P. Neittaanmäki J. Saranen, 10.1007/BF01400312, Numer. Math. 37 (1981), 333-337. (1981) Zbl0463.65073MR0627107DOI10.1007/BF01400312
  14. J. Penman J. R. Fraser, 10.1109/TMAG.1982.1061883, IEEE Trans. on Magnetics 18 (1982), 319-324. (1982) DOI10.1109/TMAG.1982.1061883
  15. G. Strang G. J. Fix, An analysis of the finite element method, Prentice Hall, New Jersey, 1973. (1973) Zbl0356.65096MR0443377
  16. J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977. (1977) 
  17. M. Zlámal, Curved elements in the finite element method, Čislennyje metody mechaniki splošnoj sredy, SO AN SSSR, 4 (1973), No. 5, 25-49. (1973) 
  18. M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.