Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries
Aplikace matematiky (1984)
- Volume: 29, Issue: 1, page 52-69
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan, and Křížek, Michal. "Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries." Aplikace matematiky 29.1 (1984): 52-69. <http://eudml.org/doc/15333>.
@article{Hlaváček1984,
abstract = {Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined.
A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence; dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence},
language = {eng},
number = {1},
pages = {52-69},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries},
url = {http://eudml.org/doc/15333},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 1
SP - 52
EP - 69
AB - Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined.
A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix.
LA - eng
KW - dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence; dual variational methods; stream function; finite element; piecewise smooth boundary; dual problem; optimal rate of convergence
UR - http://eudml.org/doc/15333
ER -
References
top- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- P. G. Ciarlet P. A. Raviart, 10.1016/0045-7825(72)90006-0, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217-249. (1972) MR0375801DOI10.1016/0045-7825(72)90006-0
- P. Doktor, On the density of smooth functions in certain subspaces of Sobolev spaces, Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. (1973) MR0336317
- B. M. Fraeijs de Veubeke M. Hogge, 10.1002/nme.1620050107, Internat. J. Numer. Methods Engrg. 5 (1972), 65-82. (1972) DOI10.1002/nme.1620050107
- V. Girault P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Springer-Verlg, Berlin, Heidelberg, New York, 1979. (1979) MR0548867
- J. Haslinger I. Hlaváček, Contact between elastic perfectly plastic bodies, Apl. Mat. 27 (1982), 27-45. (1982) MR0640138
- J. Haslinger I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43 - 65. (1976) MR0398126
- I. Hlaváček, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. (1980) MR0554090
- M. Křížek, 10.1051/m2an/1983170100351, RAIRO Anal. Numer. 17 (1983), 35--65. (1983) MR0695451DOI10.1051/m2an/1983170100351
- O. A. Ladyzenskaya, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969. (1969) MR0254401
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
- P. Neittaanmäki J. Saranen, 10.1007/BF01400312, Numer. Math. 37 (1981), 333-337. (1981) MR0627107DOI10.1007/BF01400312
- J. Penman J. R. Fraser, 10.1109/TMAG.1982.1061883, IEEE Trans. on Magnetics 18 (1982), 319-324. (1982) DOI10.1109/TMAG.1982.1061883
- G. Strang G. J. Fix, An analysis of the finite element method, Prentice Hall, New Jersey, 1973. (1973) MR0443377
- J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977. (1977)
- M. Zlámal, Curved elements in the finite element method, Čislennyje metody mechaniki splošnoj sredy, SO AN SSSR, 4 (1973), No. 5, 25-49. (1973)
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
Citations in EuDML Documents
top- Sergey Korotov, On equilibrium finite elements in three-dimensional case
- Van Bon Tran, Dual finite element analysis for contact problem of elastic bodies with an enlarging contact zone
- Ivan Hlaváček, Michal Křížek, Internal finite element approximation in the dual variational method for the biharmonic problem
- Juraj Weisz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.