Internal finite element approximation in the dual variational method for the biharmonic problem

Ivan Hlaváček; Michal Křížek

Aplikace matematiky (1985)

  • Volume: 30, Issue: 4, page 255-273
  • ISSN: 0862-7940

Abstract

top
A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with C 0 -elements. The convergence of the method is proved and an algorithm described.

How to cite

top

Hlaváček, Ivan, and Křížek, Michal. "Internal finite element approximation in the dual variational method for the biharmonic problem." Aplikace matematiky 30.4 (1985): 255-273. <http://eudml.org/doc/15404>.

@article{Hlaváček1985,
abstract = {A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with $C^0$-elements. The convergence of the method is proved and an algorithm described.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions; conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions},
language = {eng},
number = {4},
pages = {255-273},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Internal finite element approximation in the dual variational method for the biharmonic problem},
url = {http://eudml.org/doc/15404},
volume = {30},
year = {1985},
}

TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - Internal finite element approximation in the dual variational method for the biharmonic problem
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 4
SP - 255
EP - 273
AB - A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with $C^0$-elements. The convergence of the method is proved and an algorithm described.
LA - eng
KW - conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions; conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions
UR - http://eudml.org/doc/15404
ER -

References

top
  1. F. Brezzi, Non-standard finite elements for fourth order elliptic problems. Energy Methods in Finite Element Analysis, John Wiley&Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979, 193-211. (1979) MR0537006
  2. F. Brezzi P. A. Raviart, Mixed finite element methods for 4th order elliptic equations, Topics in Numerical Analysis, vol. III, Academic Press, London, 1976, 33 - 36. (1976) MR0657975
  3. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
  4. P. G. Ciarlet R. Glowinski, 10.1016/0045-7825(75)90002-X, Comput. Methods Appl. Mech. Engrg. 5 (1975), 277-295. (1975) MR0373321DOI10.1016/0045-7825(75)90002-X
  5. P. Doktor, On the density of smooth functions in certain subspaces of Sobolev spaces, Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. (1973) MR0336317
  6. B. Fraeijs de Veubeke, Finite element method in aerospace engineering problems. Computing Methods in Applied Sciences and Engineering, Part 1, Springer- Verlag, Berlin, Heidelberg, New York, 1974, 224-258. (1974) 
  7. B. Fraeijs de Veubeke G. Sander, 10.1016/0020-7683(68)90049-8, Int. J. Solids and Structures 4 (1968), 447-468. (1968) DOI10.1016/0020-7683(68)90049-8
  8. I. Hlaváček, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. (1979) MR0547046
  9. I. Hlaváček M. Křížek, Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries, Apl. Mat. 29 (1984), 52-69. (1984) MR0729953
  10. J. Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method, Apl. Mat. 27 (1982), 352-374. (1982) MR0674981
  11. M. Křížek, 10.1051/m2an/1983170100351, RAIRO Anal. Numer. 17 (1983), 35-65. (1983) MR0695451DOI10.1051/m2an/1983170100351
  12. L. A. Ljusternik V. I. Sobolev, A short course of functional analysis, (Russian). Izd. Vysšaja škola, Moscow, 1982. (1982) 
  13. L. Mansfield, A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains, Math. Соmр. 32 (1978), 135-142. (1978) Zbl0382.65060MR0468241
  14. S. G. Michlin, Variational methods in mathematical physics, (Russian). Izd. Nauka, Moscow, 1970. (1970) 
  15. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  16. J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
  17. K. Rektorys, Survey of applicable mathematics, Iliffe Books Ltd., London, SNTL, Prague, 1969. (1969) Zbl0175.15802MR0241025
  18. K. Rektorys, Variational methods in mathematics, science and engineering, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. (1977) MR0487653
  19. G. Sander, Application of the dual analysis principle, Proc. of the IUTAM Sympos. on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège, 1971, 167-207. (1971) 
  20. M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (3973), 229-240. MR0395263DOI10.1137/0710022
  21. A. Ženíšek, Curved triangular finite C m -elements, Apl. Mat. 23 (1978), 346-377. (1978) MR0502072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.