Internal finite element approximation in the dual variational method for the biharmonic problem
Aplikace matematiky (1985)
- Volume: 30, Issue: 4, page 255-273
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan, and Křížek, Michal. "Internal finite element approximation in the dual variational method for the biharmonic problem." Aplikace matematiky 30.4 (1985): 255-273. <http://eudml.org/doc/15404>.
@article{Hlaváček1985,
abstract = {A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with $C^0$-elements. The convergence of the method is proved and an algorithm described.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions; conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions},
language = {eng},
number = {4},
pages = {255-273},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Internal finite element approximation in the dual variational method for the biharmonic problem},
url = {http://eudml.org/doc/15404},
volume = {30},
year = {1985},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - Internal finite element approximation in the dual variational method for the biharmonic problem
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 4
SP - 255
EP - 273
AB - A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with $C^0$-elements. The convergence of the method is proved and an algorithm described.
LA - eng
KW - conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions; conforming finite element method; dual variational formulation; biharmonic problem; mixed boundary conditions
UR - http://eudml.org/doc/15404
ER -
References
top- F. Brezzi, Non-standard finite elements for fourth order elliptic problems. Energy Methods in Finite Element Analysis, John Wiley&Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979, 193-211. (1979) MR0537006
- F. Brezzi P. A. Raviart, Mixed finite element methods for 4th order elliptic equations, Topics in Numerical Analysis, vol. III, Academic Press, London, 1976, 33 - 36. (1976) MR0657975
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- P. G. Ciarlet R. Glowinski, 10.1016/0045-7825(75)90002-X, Comput. Methods Appl. Mech. Engrg. 5 (1975), 277-295. (1975) MR0373321DOI10.1016/0045-7825(75)90002-X
- P. Doktor, On the density of smooth functions in certain subspaces of Sobolev spaces, Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. (1973) MR0336317
- B. Fraeijs de Veubeke, Finite element method in aerospace engineering problems. Computing Methods in Applied Sciences and Engineering, Part 1, Springer- Verlag, Berlin, Heidelberg, New York, 1974, 224-258. (1974)
- B. Fraeijs de Veubeke G. Sander, 10.1016/0020-7683(68)90049-8, Int. J. Solids and Structures 4 (1968), 447-468. (1968) DOI10.1016/0020-7683(68)90049-8
- I. Hlaváček, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. (1979) MR0547046
- I. Hlaváček M. Křížek, Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries, Apl. Mat. 29 (1984), 52-69. (1984) MR0729953
- J. Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method, Apl. Mat. 27 (1982), 352-374. (1982) MR0674981
- M. Křížek, 10.1051/m2an/1983170100351, RAIRO Anal. Numer. 17 (1983), 35-65. (1983) MR0695451DOI10.1051/m2an/1983170100351
- L. A. Ljusternik V. I. Sobolev, A short course of functional analysis, (Russian). Izd. Vysšaja škola, Moscow, 1982. (1982)
- L. Mansfield, A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains, Math. Соmр. 32 (1978), 135-142. (1978) Zbl0382.65060MR0468241
- S. G. Michlin, Variational methods in mathematical physics, (Russian). Izd. Nauka, Moscow, 1970. (1970)
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
- K. Rektorys, Survey of applicable mathematics, Iliffe Books Ltd., London, SNTL, Prague, 1969. (1969) Zbl0175.15802MR0241025
- K. Rektorys, Variational methods in mathematics, science and engineering, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. (1977) MR0487653
- G. Sander, Application of the dual analysis principle, Proc. of the IUTAM Sympos. on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège, 1971, 167-207. (1971)
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (3973), 229-240. MR0395263DOI10.1137/0710022
- A. Ženíšek, Curved triangular finite -elements, Apl. Mat. 23 (1978), 346-377. (1978) MR0502072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.