Conforming equilibrium finite element methods for some elliptic plane problems
- Volume: 17, Issue: 1, page 35-65
- ISSN: 0764-583X
Access Full Article
topHow to cite
topKřížek, Michal. "Conforming equilibrium finite element methods for some elliptic plane problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.1 (1983): 35-65. <http://eudml.org/doc/193408>.
@article{Křížek1983,
author = {Křížek, Michal},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element subspaces; spaces of divergence free functions; equilibrium finite element models},
language = {eng},
number = {1},
pages = {35-65},
publisher = {Dunod},
title = {Conforming equilibrium finite element methods for some elliptic plane problems},
url = {http://eudml.org/doc/193408},
volume = {17},
year = {1983},
}
TY - JOUR
AU - Křížek, Michal
TI - Conforming equilibrium finite element methods for some elliptic plane problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 1
SP - 35
EP - 65
LA - eng
KW - finite element subspaces; spaces of divergence free functions; equilibrium finite element models
UR - http://eudml.org/doc/193408
ER -
References
top- [1] D. J. ALLMAN, On compatible and equilibrium models with linear stresses for stretching of elastic plates, in [27]. Zbl0407.73059
- [2] F. BREZZI, Non-standard finite elements for fourth order elliptic problems, in [27]. Zbl0411.41013
- [3] G. R. BUSACKER and T. L. SAATY, Finite graphs and network : an introduction with applications, McGraw-Hill, New York, London, Sydney, 1965. Zbl0146.20104MR209176
- [4] P. G. CIARLET, The finite element method for elliptic problems, North-Holland publishing company, Amsterdam, NewYork, Oxford, 1978. Zbl0383.65058MR520174
- [5] G. DUVAUT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, NewYork, 1976. Zbl0331.35002MR521262
- [6] M. FORTIN, Approximation des fonctions à divergence nulle par la méthode des éléments finis, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972, vol. 1, 99-103. Zbl0277.76024MR478666
- [7] B. M. FRAEIJS DE VEUBEKE and M. HOGGE, Dual analysis for heat conduction problems by finite elements, Internat. J. Numer. Methods Energ. 5 (1972), 65-82 Zbl0251.65061
- [8] V. GIRAULT and P. A. RAVIART, Finite element approximation of the Navier-Stokes equation, Springer-Verlag, Berlin, Heidelberg, New York, 1979. Zbl0413.65081MR548867
- [9] R. GLOWINSKI and O. PIRONNEAU, On numerical methods for the Stokes problem, in [27]. Zbl0415.76024
- [10] B. J. HARTZ and V. B. WATWOOD, An equilibrium stress field model for finite element solution of two-dimensional electrostatic problems, Internat. J. Solids and Structures 4 (1968), 857-873. Zbl0164.26201
- [11] J. HASLINGER and I. HLAVACEK, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43-65. Zbl0326.35020MR398126
- [12] I. HLAVACEK, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. Zbl0441.73101MR547046
- [13] I. HLAVACEK, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. Zbl0424.65056MR554090
- [14] C. JOHNSON, On the convergence of a mixed finite element method for plate bending problems, Numer. Math. 21 (1973), 43-62. Zbl0264.65070MR388807
- [15] C. JOHNSON and B. MERCIER, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Maht. 30 (1978), 103-116. Zbl0427.73072MR483904
- [16] D. W. KELLY, Bounds on discretization error by special reduced integration of the Lagrange family of finite elements, Internat. J. Numer. Methods Energ. 15 (1980), 1489-1506. Zbl0438.73057MR595369
- [17] M. KRIZEK, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), 46-75. Zbl0488.73072MR640139
- [18] B. MERCIER, Topics in finite element solution of elliptic problems, Springer-Verlag, Berlin, Heidelberg, New York, 1979. Zbl0445.65100
- [19] J. NECAS, Les méthodes directes en théorie des équations elleptiques, Academia, Prague, 1967. MR227584
- [20] J. NECAS and I. HLAVACEK, Mahtematical theory of elastic and elasto-plastic bodies : an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. Zbl0448.73009MR600655
- [21] A. R. S. PONTER, The application of dual minimum theorems to the finite element solution of potential problems with special reference to seepage, Internat. J. Numer. Methods Energ. 4 (1972), 85-93. Zbl0254.76095MR297211
- [22] G. SANDER, Application of the dual analysis principle , Proceedings of the IUTAM Symposium on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège (1971), 167-207.
- [23] R. TEMAM, Navier-Stokes equations North-Holland publishing company, Amsterdam, New York, Oxford, 1977. Zbl0426.35003MR603444
- [24] J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977.
- [25] J. M. THOMAS and M. AMARA, Approximation par éléments finis équilibre du système de l'élasticité linéaire, C.R. Acad. Sc. Paris, t. 286 (1978), 1147-1150. Zbl0395.73011MR495556
- [26] J. M. THOMAS and M. AMARA, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), 367-383. Zbl0401.73079MR553347
- [27] Energy methods in finite element analysis, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979. MR536995
Citations in EuDML Documents
top- Michal Křížek, Zdeněk Milka, On an unconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions
- Ivan Hlaváček, Optimization of the domain in elliptic problems by the dual finite element method
- Juraj Weisz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
- Ivan Hlaváček, Michal Křížek, Internal finite element approximation in the dual variational method for the biharmonic problem
- Ivan Hlaváček, Michal Křížek, Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries
- Michal Křížek, Pekka Neittaanmäki, Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains
- Miroslav Vondrák, Slab analogy in theory and practice of conforming equilibrium stress models for finite element analysis of plane elastostatics
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.