Numerical analysis of the general biharmonic problem by the finite element method
Aplikace matematiky (1982)
- Volume: 27, Issue: 5, page 352-374
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHřebíček, Jiří. "Numerical analysis of the general biharmonic problem by the finite element method." Aplikace matematiky 27.5 (1982): 352-374. <http://eudml.org/doc/15257>.
@article{Hřebíček1982,
abstract = {The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit $C^1$-elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform $V_\{Oh\}$-ellipticity are found.},
author = {Hřebíček, Jiří},
journal = {Aplikace matematiky},
keywords = {curved triangular finite elements; mixed boundary conditions; biharmonic problem; Bell’s elements; Error bounds; curved triangular finite elements; mixed boundary conditions; biharmonic problem; Bell's elements; Error bounds},
language = {eng},
number = {5},
pages = {352-374},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical analysis of the general biharmonic problem by the finite element method},
url = {http://eudml.org/doc/15257},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Hřebíček, Jiří
TI - Numerical analysis of the general biharmonic problem by the finite element method
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 5
SP - 352
EP - 374
AB - The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit $C^1$-elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform $V_{Oh}$-ellipticity are found.
LA - eng
KW - curved triangular finite elements; mixed boundary conditions; biharmonic problem; Bell’s elements; Error bounds; curved triangular finite elements; mixed boundary conditions; biharmonic problem; Bell's elements; Error bounds
UR - http://eudml.org/doc/15257
ER -
References
top- J. H. Bramble S. R. Hilbert, 10.1137/0707006, SIAM J. Numer. Anal. 7 (1970), 112-124. (1970) MR0263214DOI10.1137/0707006
- J. H. Bramble M. Zlámal, Triangular elements in the finite element method, Math. Соmр. 24 (1970), 809-820. (1970) MR0282540
- P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Nord-Holland Publishing Соmр., Amsterdam 1978. (1978) Zbl0383.65058MR0520174
- I. Hlaváček J. Naumann, Inhomogeneous boundary value problems for the von Kármán equations, I, Apl. mat. 19 (1974), 253 - 269. (1974) MR0377307
- J. Hřebíček, Numerické řešení obecného biharmonického problému metodou konečných prvků, Kandidátská disertační práce. ÚFM ČSAV Brno 1981. (1981)
- V. Kolář J. Kratochvíl F. Leitner A. Ženíšek, Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL Praha 1979. (1979)
- P. Lesaint M. Zlámal, Superconvergence of the gradient of finite element solution, R.A.I.R.O. 15 (1979), 139-166. (1979) MR0533879
- L. Mansfield, 10.1137/0715037, SIAM J. Numer. Anal. 15 (1978), 568-579. (1978) Zbl0391.65047MR0471373DOI10.1137/0715037
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- K. Rektorys, Variační metody v inženýrských problémech a v problémech matematické fyziky, SNTL, Praha 1974. (1974) Zbl0371.35001MR0487652
- A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, N. J., 1971. (1971) Zbl0379.65013MR0327006
- M. Zlámal, 10.1002/nme.1620050307, Int. J. Num. Meth. Eng. 5 (1973), 367-373. (1973) MR0395262DOI10.1002/nme.1620050307
- M. Zlámal, 10.1137/0710022, SIAM J. Num. Anal. 10 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
- M. Zlámal, 10.1137/0711031, SIAM J. Num. Anal. 11 (1974), 347-362. (1974) MR0343660DOI10.1137/0711031
- A. Ženíšek, Curved triangular finite -elements, Apl. mat. 23 (1978), 346-377. (1978) MR0502072
- A. Ženíšek, Nonhomogenous boundary conditions and curved triangular finite elements, Apl. mat. 26 (1981), 121-141. (1981) MR0612669
- A. Ženíšek, Discrete forms of Friedrich's inequalities in the finite element method, R.A.I.R.O. 15 (1981), 265-286. (1981) MR0631681
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.