Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach
Aplikace matematiky (1986)
- Volume: 31, Issue: 4, page 270-281
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKestřánek, Zdeněk. "Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach." Aplikace matematiky 31.4 (1986): 270-281. <http://eudml.org/doc/15454>.
@article{Kestřánek1986,
abstract = {The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given.},
author = {Kestřánek, Zdeněk},
journal = {Aplikace matematiky},
keywords = {incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables; incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables},
language = {eng},
number = {4},
pages = {270-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach},
url = {http://eudml.org/doc/15454},
volume = {31},
year = {1986},
}
TY - JOUR
AU - Kestřánek, Zdeněk
TI - Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach
JO - Aplikace matematiky
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 4
SP - 270
EP - 281
AB - The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given.
LA - eng
KW - incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables; incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables
UR - http://eudml.org/doc/15454
ER -
References
top- C. Johnson, 10.1016/0022-247X(78)90129-4, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. (1978) Zbl0373.73049MR0489198DOI10.1016/0022-247X(78)90129-4
- I. Hlaváček J. Nečas, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1981. (1981)
- I. Hlaváček, A Finite Element Solution for Plasticity with Strain-Hardening, R.A.I.R.O. Numerical Analysis, V. 14, No. 4, 1980, pp. 347-368. (1980) MR0596540
- Nguyen Quoc Son, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., V. 25, 1973, pp. 695-702. (1973) MR0366164
- B. Halphen, Nguyen Quoc Son, Sur les matériaux standard généralisés, J. Mécan., V. 14, 1975, pp. 39-63. (1975) MR0416177
- C. Johnson, 10.1137/0714037, S.I.A.M. J. Numer. Anal., V. 14, 1977, pp. 575-583. (1977) Zbl0374.73039MR0489265DOI10.1137/0714037
- Z. Kestřánek, A Finite Element Solution of Variational Inequality of Plasticity with Strain-Hardening, Thesis, Czechoslovak Academy of Sciences, 1982 (in Czech). (1982)
- V. B. Watwood B. J. Hartz, An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, V. 4, 1968, pp. 857-873. (1968)
- M. Avriel, Nonlinear Programming. Analysis and Methods, Prentice-Hall, New York, 1976. (1976) Zbl0361.90035MR0489892
- P. S. Theocaris E. Marketos, 10.1016/0022-5096(64)90033-X, J. Mech. Phys. Solids, 1964, V. 12, pp. 377-390. (1964) DOI10.1016/0022-5096(64)90033-X
- C. Johnson, 10.1007/BF01396567, Numer. Math., V. 26, 1976, pp. 79-84. (1976) Zbl0355.73035MR0436626DOI10.1007/BF01396567
- M. Křížek, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat., V. 27, No. 1, 1982. (1982) MR0640139
- D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972. (1972) Zbl0241.90051
- M. S. Bazaraa C. M. Shetty, Nonlinear Programming. Theory and Algorithms, John Wiley and Sons, New York, 1979. (1979) MR0533477
- P. E. Gill W. Murrey, Numerical Methods for Constrained Optimization, Academic Press, London, 1974. (1974) MR0395227
- B. M. Irons, A Frontal Solution Program for Finite Element Analysis, Intern. J. for Numer. Meth. in Eng., V. 2, 1970. (1970) Zbl0252.73050
- K. Schittkowski, The Nonlinear Programming Method cf Wilson, Han and Powell with an Augmented Lagrangian Type Line Search Function, Part 1, 2. Numer. Math,, V. 38, No. 1, 1981. (1981)
- A. Samuelsson M. Froier, Finite Elements in Plasticity. A Variational Inequality Approach, Proc. MAFELAP 1978, Academic Press, London, 1979. (1978) MR0559293
- J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris, 1971. (1971) MR0298892
- O. L. Mangasarian, Nonlinear Programming 3, 4, Academic Press, New York, 1978, 1981. (1978) MR0503824
- Z. Kestřánek, Variational Inequalities in Plasticity - Dual Finite Element Approach, Proc. MAFELAP 1984, Academic Press, London, 1984. (1984)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.