Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach

Zdeněk Kestřánek

Aplikace matematiky (1986)

  • Volume: 31, Issue: 4, page 270-281
  • ISSN: 0862-7940

Abstract

top
The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given.

How to cite

top

Kestřánek, Zdeněk. "Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach." Aplikace matematiky 31.4 (1986): 270-281. <http://eudml.org/doc/15454>.

@article{Kestřánek1986,
abstract = {The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given.},
author = {Kestřánek, Zdeněk},
journal = {Aplikace matematiky},
keywords = {incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables; incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables},
language = {eng},
number = {4},
pages = {270-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach},
url = {http://eudml.org/doc/15454},
volume = {31},
year = {1986},
}

TY - JOUR
AU - Kestřánek, Zdeněk
TI - Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach
JO - Aplikace matematiky
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 4
SP - 270
EP - 281
AB - The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given.
LA - eng
KW - incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables; incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables
UR - http://eudml.org/doc/15454
ER -

References

top
  1. C. Johnson, 10.1016/0022-247X(78)90129-4, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. (1978) Zbl0373.73049MR0489198DOI10.1016/0022-247X(78)90129-4
  2. I. Hlaváček J. Nečas, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1981. (1981) Zbl0448.73009
  3. I. Hlaváček, A Finite Element Solution for Plasticity with Strain-Hardening, R.A.I.R.O. Numerical Analysis, V. 14, No. 4, 1980, pp. 347-368. (1980) Zbl0471.73078MR0596540
  4. Nguyen Quoc Son, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., V. 25, 1973, pp. 695-702. (1973) MR0366164
  5. B. Halphen, Nguyen Quoc Son, Sur les matériaux standard généralisés, J. Mécan., V. 14, 1975, pp. 39-63. (1975) Zbl0308.73017MR0416177
  6. C. Johnson, 10.1137/0714037, S.I.A.M. J. Numer. Anal., V. 14, 1977, pp. 575-583. (1977) Zbl0374.73039MR0489265DOI10.1137/0714037
  7. Z. Kestřánek, A Finite Element Solution of Variational Inequality of Plasticity with Strain-Hardening, Thesis, Czechoslovak Academy of Sciences, 1982 (in Czech). (1982) 
  8. V. B. Watwood B. J. Hartz, An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, V. 4, 1968, pp. 857-873. (1968) Zbl0164.26201
  9. M. Avriel, Nonlinear Programming. Analysis and Methods, Prentice-Hall, New York, 1976. (1976) Zbl0361.90035MR0489892
  10. P. S. Theocaris E. Marketos, 10.1016/0022-5096(64)90033-X, J. Mech. Phys. Solids, 1964, V. 12, pp. 377-390. (1964) DOI10.1016/0022-5096(64)90033-X
  11. C. Johnson, 10.1007/BF01396567, Numer. Math., V. 26, 1976, pp. 79-84. (1976) Zbl0355.73035MR0436626DOI10.1007/BF01396567
  12. M. Křížek, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat., V. 27, No. 1, 1982. (1982) Zbl0488.73072MR0640139
  13. D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972. (1972) Zbl0241.90051
  14. M. S. Bazaraa C. M. Shetty, Nonlinear Programming. Theory and Algorithms, John Wiley and Sons, New York, 1979. (1979) Zbl0476.90035MR0533477
  15. P. E. Gill W. Murrey, Numerical Methods for Constrained Optimization, Academic Press, London, 1974. (1974) MR0395227
  16. B. M. Irons, A Frontal Solution Program for Finite Element Analysis, Intern. J. for Numer. Meth. in Eng., V. 2, 1970. (1970) Zbl0252.73050
  17. K. Schittkowski, The Nonlinear Programming Method cf Wilson, Han and Powell with an Augmented Lagrangian Type Line Search Function, Part 1, 2. Numer. Math,, V. 38, No. 1, 1981. (1981) Zbl0534.65030
  18. A. Samuelsson M. Froier, Finite Elements in Plasticity. A Variational Inequality Approach, Proc. MAFELAP 1978, Academic Press, London, 1979. (1978) Zbl0437.73058MR0559293
  19. J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris, 1971. (1971) Zbl0211.17402MR0298892
  20. O. L. Mangasarian, Nonlinear Programming 3, 4, Academic Press, New York, 1978, 1981. (1978) MR0503824
  21. Z. Kestřánek, Variational Inequalities in Plasticity - Dual Finite Element Approach, Proc. MAFELAP 1984, Academic Press, London, 1984. (1984) Zbl0608.73040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.