On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case

Jiří Nedoma

Aplikace matematiky (1987)

  • Volume: 32, Issue: 3, page 186-199
  • ISSN: 0862-7940

Abstract

top
The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary Γ α of a polygonal domain G R 2 is given. The rate of convergence is proved if the exact solution is sufficiently regular.

How to cite

top

Nedoma, Jiří. "On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case." Aplikace matematiky 32.3 (1987): 186-199. <http://eudml.org/doc/15492>.

@article{Nedoma1987,
abstract = {The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary $\Gamma _\alpha $ of a polygonal domain $G\subset R^2$ is given. The rate of convergence is proved if the exact solution is sufficiently regular.},
author = {Nedoma, Jiří},
journal = {Aplikace matematiky},
keywords = {Signorini problem; model problem in geodynamics; simulation of dynamic plate tectonic model; collision zones; equilibrium equation; heat conduction equation; two-dimensional quasi-steady-state thermoelastic contact problem; Coulomb friction; Existence; uniqueness; finite element method; piecewise linear functions; triangulation; thermal part; quadratic programming; elastic part; approximation of a saddle point; Signorini problem; model problem in geodynamics; simulation of dynamic plate tectonic model; collision zones; equilibrium equation; heat conduction equation; two-dimensional quasi-steady-state thermoelastic contact problem; Coulomb friction; Existence; uniqueness; finite element method; piecewise linear functions; triangulation; thermal part; quadratic programming; elastic part; approximation of a saddle point},
language = {eng},
number = {3},
pages = {186-199},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case},
url = {http://eudml.org/doc/15492},
volume = {32},
year = {1987},
}

TY - JOUR
AU - Nedoma, Jiří
TI - On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 3
SP - 186
EP - 199
AB - The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary $\Gamma _\alpha $ of a polygonal domain $G\subset R^2$ is given. The rate of convergence is proved if the exact solution is sufficiently regular.
LA - eng
KW - Signorini problem; model problem in geodynamics; simulation of dynamic plate tectonic model; collision zones; equilibrium equation; heat conduction equation; two-dimensional quasi-steady-state thermoelastic contact problem; Coulomb friction; Existence; uniqueness; finite element method; piecewise linear functions; triangulation; thermal part; quadratic programming; elastic part; approximation of a saddle point; Signorini problem; model problem in geodynamics; simulation of dynamic plate tectonic model; collision zones; equilibrium equation; heat conduction equation; two-dimensional quasi-steady-state thermoelastic contact problem; Coulomb friction; Existence; uniqueness; finite element method; piecewise linear functions; triangulation; thermal part; quadratic programming; elastic part; approximation of a saddle point
UR - http://eudml.org/doc/15492
ER -

References

top
  1. J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris 1971. (1971) MR0298892
  2. G. Duvaut, Equilibre d'un solide élastique avec contact unilatéral ef frottement de Coulomb, C.R.A.S. 290 (1980) A 263-265. (1980) MR0564325
  3. G. Duvaut J. L. Lions, Les inéquations en mechanique et en physique, Dunod, Paris 1972. (1972) MR0464857
  4. I. Ekeland R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam 1976. (1976) MR0463994
  5. R. S. Falk, Error estimates for approximation of a class of variational inequalities, Math. of Соmр. 28 (1974), 963-971. (1974) MR0391502
  6. R. Glowinski J. L. Lions R. Trémoliéres, Analyse Numerique des inéqualitions variationnelles, Dunod, Paris 1976. (1976) 
  7. J. Haslinger, 10.1002/mma.1670050127, Math. Meth. in Sci Appl. 5 (1983). (1983) Zbl0525.73130MR0716664DOI10.1002/mma.1670050127
  8. J. Haslinger I. Hlaváček, 10.1016/0022-247X(82)90257-8, J. Math. Anal. Appl. 86 (1983) 1, 99-122, (1983) MR0649858DOI10.1016/0022-247X(82)90257-8
  9. J. Haslinger J. Tvrdý, Approximation and numerical solution of contact problems with friction, Apl. mat. 28 (1983) 1, 55-74. (1983) MR0684711
  10. I. Hlaváček J. Haslinger J. Nečas J. Lovíšek, Solving Variational Inequalities in Mechanics, (in Slovak). ALFA, Bratislava 1982. (1982) 
  11. I. Hlaváček J. Lovíšek, A finite element analysis for the Signorini problem in plane elastostastatics, Apl. mat. 22 (1977), 215-228. (1977) MR0446014
  12. J. Jarušek, Contact problems with friction, Thesis, MFFUK, Praha 1980 (in Czech). (1980) 
  13. J. Jarušek, Contact problems with bounded friction. Coercive case, Czech. Math. J. 33 (1983) 2, 237-261. (1983) MR0699024
  14. J. Jarušek, Contact problems with bounded friction. Semicoercive case, Czech. Math. J. 34 (109) (1984), 619-629. (1984) MR0764444
  15. J. Nečas J. Jarušek J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction, Boll. Unione Mat. Ital. (5) 17-B (1980), 796-811. (1980) MR0580559
  16. J. Nečas I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Elsevier, Amsterdam 1981. (1981) MR0600655
  17. J. Nedoma, Some mathematical problems of contemporary geodynamics and some of their solution, (manuscript 1979). (1979) 
  18. J. Nedoma, The use of the variational inequalities in geophysics, Proc. Summer school "Algorithms and software of numerical mathematics" (Nové Město n. M. 1979) MFF UK, Praha 1980 (in Czech). (1979) 
  19. J. Nedoma, Model of Carpathian Continent/Continent Collision, Symposium on Plate Tectonics of Eastern Europe, EGS-ESC Budapest 8,24-29 August 1980, Budapest 1980. Proc. of the 17th Assembly of the ESC Budapest 1980, 629-637. (1980) 
  20. J. Nedoma, Variational methods and finite element method in geophysical problems, In: Computational methods in geophysics. Radio i svyaz, Moscow 1981 (in Russian). (1981) 
  21. J. Nedoma, Thermoelastic stress-strain analysis of the geodynamic mechanism, Gerlands Beitr. Geophysik, Leipzig 91 (1982) 1, 75-89. (1982) 
  22. J. Nedoma, Contribution to the study of the geotectonic stress field in the region of the West Carpathians:, Proc. of the 2nd Inter. Symposium on the Analysis of Seismicity and on Seismic Hazard, Liblice, Czechoslovakia, May 18-23, 1981, Geoph. Inst, Czech. Acad. Sci, Prague 1982, 321-338. (1981) MR0411367
  23. J. Nedoma, On one type of Signorini problem without friction in linear thermoelasticity, Apl. mat. 28 (1983) 6, 393-407. (1983) MR0723201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.