Domain optimization in axisymmetric elliptic boundary value problems by finite elements
Aplikace matematiky (1988)
- Volume: 33, Issue: 3, page 213-244
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan. "Domain optimization in axisymmetric elliptic boundary value problems by finite elements." Aplikace matematiky 33.3 (1988): 213-244. <http://eudml.org/doc/15539>.
@article{Hlaváček1988,
abstract = {An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.},
author = {Hlaváček, Ivan},
journal = {Aplikace matematiky},
keywords = {domain optimization; triangular finite element spaces; cost functionals; domain optimization; triangular finite element spaces; cost functionals},
language = {eng},
number = {3},
pages = {213-244},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Domain optimization in axisymmetric elliptic boundary value problems by finite elements},
url = {http://eudml.org/doc/15539},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Hlaváček, Ivan
TI - Domain optimization in axisymmetric elliptic boundary value problems by finite elements
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 3
SP - 213
EP - 244
AB - An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.
LA - eng
KW - domain optimization; triangular finite element spaces; cost functionals; domain optimization; triangular finite element spaces; cost functionals
UR - http://eudml.org/doc/15539
ER -
References
top- D. Begis R. Glowinski, 10.1007/BF01447854, Appl. Math. & Optim. 2 (1975), 130-169. (1975) MR0443372DOI10.1007/BF01447854
- B. Mercier G. Raugel, Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et series de Fourier en , R. A. I. R. O. , Anal. numér., 16 (1982), 405-461. (1982) MR0684832
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, DVW, Berlin 1978. (1978) Zbl0387.46033MR0503903
- P. G. Ciarlet, The finite element method for elliptic problems, North- Holland, Amsterdam 1978. (1978) Zbl0383.65058MR0520174
Citations in EuDML Documents
top- Ivan Hlaváček, Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions
- Ivan Hlaváček, Domain optimization in -axisymmetric elliptic problems by dual finite element method
- Ivan Hlaváček, Dual finite element analysis of axisymmetric elliptic problems with an absolute term
- Ivan Hlaváček, Korn's inequality uniform with respect to a class of axisymmetric bodies
- Ivan Hlaváček, Raino Mäkinen, On the numerical solution of axisymmetric domain optimization problems
- Ivan Hlaváček, Shape optimization of elasto-plastic axisymmetric bodies
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.