# Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions

Aplikace matematiky (1990)

- Volume: 35, Issue: 5, page 405-417
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topHlaváček, Ivan. "Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions." Aplikace matematiky 35.5 (1990): 405-417. <http://eudml.org/doc/15639>.

@article{Hlaváček1990,

abstract = {A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King [6], [7].},

author = {Hlaváček, Ivan},

journal = {Aplikace matematiky},

keywords = {finite elements; penalty method; axisymmetric problems; extrapolation; a priori error estimates; finite element; a priori error estimates; penalty method; axisymmetric problems; extrapolation},

language = {eng},

number = {5},

pages = {405-417},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions},

url = {http://eudml.org/doc/15639},

volume = {35},

year = {1990},

}

TY - JOUR

AU - Hlaváček, Ivan

TI - Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions

JO - Aplikace matematiky

PY - 1990

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 35

IS - 5

SP - 405

EP - 417

AB - A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King [6], [7].

LA - eng

KW - finite elements; penalty method; axisymmetric problems; extrapolation; a priori error estimates; finite element; a priori error estimates; penalty method; axisymmetric problems; extrapolation

UR - http://eudml.org/doc/15639

ER -

## References

top- I. Babuška, The finite element method with penalty, Math. Соmр. 27, (1973), 221 - 228. (1973) Zbl0299.65057MR0351118
- J. H. Bramble V. Thomée, Semidiscrete-least squares methods for a parabolic boundary value problem, Math. Соmр. 26 (1972), 633-648. (1972) Zbl0268.65060MR0349038
- E.J.Haug K. Choi V. Komkov, Design sensitivity analysis of structural systems, Academic Press, London 1986. (1986) Zbl0618.73106MR0860040
- I. Hlaváček M. Křížek, Dual finite element analysis of 3D-axisymmetric elliptic problems, (To appear). Zbl0786.65090
- I. Hlaváček, Domain optimization in axisymmetric elliptic boundary value problems by finite elements, Apl. Mat. 33 (1988), 213-244. (1988) Zbl0677.65102MR0944785
- J. T. King, 10.1007/BF01459948, Numer. Math. 23, (1974), 153-165. (1974) Zbl0272.65092MR0400742DOI10.1007/BF01459948
- J. T. King S. M. Serbin, 10.1007/BF02252082, Computing 16 (1976), 339-347. (1976) Zbl0338.65054MR0418485DOI10.1007/BF02252082
- J. Nečas, Les methodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- B. Mercier G. Raugel, Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en $\theta $, RAIRO, Anal. numér. 16 (1982), 405-461. (1982) Zbl0531.65054MR0684832
- M. Zlámal, 10.1137/0710022, SfAM Numer. Anal. 10, (1973), 229-240. (1973) MR0395263DOI10.1137/0710022

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.